These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20101983)

  • 1. [Development of photothermal microactuator based on spectral analysis of photothermal expansion material].
    Liu C; Zhang DX; Zhang HJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3047-51. PubMed ID: 20101983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic observation and laser-controlled microoptothermal drive mechanism.
    Zhang D; Zhang H; Liu C; Jiang J
    Microsc Res Tech; 2008 Feb; 71(2):119-24. PubMed ID: 17960601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental study of optothermal expansion and optothermal microactuator.
    Zhang D; Zhang H; Liu C; Jiang J
    Opt Express; 2008 Aug; 16(17):13476-85. PubMed ID: 18711587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal analysis of individual nanoparticulate samples using micromechanical resonators.
    Larsen T; Schmid S; Villanueva LG; Boisen A
    ACS Nano; 2013 Jul; 7(7):6188-93. PubMed ID: 23799869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the absorption uniformity of optical thin films based on the photothermal detuning technique.
    Hao H; Zhou A; Rao M
    Appl Opt; 2012 Oct; 51(28):6844-7. PubMed ID: 23033101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-fabrication and monitoring of three-dimensional microstructures based on laser-induced thermoplastic formation.
    Wang L; Zhang D; Wen Z; Zhang H
    Microsc Res Tech; 2009 Oct; 72(10):717-22. PubMed ID: 19378342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-driven optothermal microactuator operated in water.
    You Q; Wang Y; Zhang Z; Zhang H; Tsuchiya T; Tabata O
    Appl Opt; 2020 Feb; 59(6):1627-1632. PubMed ID: 32225666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.
    Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS
    ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial hyperthermia through local photothermal heating with a fiberoptic microneedle device.
    Hood RL; Rossmeisl JH; Andriani RT; Wilkinson AR; Robertson JL; Rylander CG
    Lasers Surg Med; 2013 Mar; 45(3):167-74. PubMed ID: 23390044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of infrared photothermal deflection spectroscopy (mirage effect) for analysis of condensed-phase aerosols collected in a micro-orifice uniform deposit impactor.
    Dada OO; Bialkowski SE
    Appl Spectrosc; 2008 Dec; 62(12):1336-43. PubMed ID: 19094392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source.
    Zaid G; Park SN; Park S; Lee DH
    Appl Opt; 2010 Dec; 49(35):6772-83. PubMed ID: 21151235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars.
    Tanaka Y; Morishima K; Shimizu T; Kikuchi A; Yamato M; Okano T; Kitamori T
    Lab Chip; 2006 Feb; 6(2):230-5. PubMed ID: 16450032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-wavelength, continuous-wave Yb:YAG laser for high-resolution photothermal common-path interferometry.
    Zhuang F; Jungbluth B; Gronloh B; Hoffmann HD; Zhang G
    Appl Opt; 2013 Jul; 52(21):5171-7. PubMed ID: 23872763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.
    Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J
    ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sagnac interferometer for photothermal deflection spectroscopy.
    Shiokawa N; Mizuno Y; Tsuchiya H; Tokunaga E
    Opt Lett; 2012 Jul; 37(13):2655-7. PubMed ID: 22743485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant-Opto-Thermomechanical Oscillator (ROTMO): A Low-Power, Large Displacement, High-Frequency Optically Driven Microactuator.
    Pevec S; Donlagic D
    Small; 2022 Sep; 18(35):e2107552. PubMed ID: 35869621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation.
    Chi M; Jensen OB; Erbert G; Sumpf B; Petersen PM
    Appl Opt; 2011 Jan; 50(1):90-4. PubMed ID: 21221165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the photothermal conversion efficiency of gold nanocrystals.
    Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J
    Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.
    Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M
    Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.