These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 20102720)
41. Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer. Nagasaka T; Koi M; Kloor M; Gebert J; Vilkin A; Nishida N; Shin SK; Sasamoto H; Tanaka N; Matsubara N; Boland CR; Goel A Gastroenterology; 2008 Jun; 134(7):1950-60, 1960.e1. PubMed ID: 18435933 [TBL] [Abstract][Full Text] [Related]
42. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. McGivern A; Wynter CV; Whitehall VL; Kambara T; Spring KJ; Walsh MD; Barker MA; Arnold S; Simms LA; Leggett BA; Young J; Jass JR Fam Cancer; 2004; 3(2):101-7. PubMed ID: 15340260 [TBL] [Abstract][Full Text] [Related]
43. Hereditary colorectal cancer in the general population: from cancer registration to molecular diagnosis. de Leon MP; Pedroni M; Benatti P; Percesepe A; Di Gregorio C; Foroni M; Rossi G; Genuardi M; Neri G; Leonardi F; Viel A; Capozzi E; Boiocchi M; Roncucci L Gut; 1999 Jul; 45(1):32-8. PubMed ID: 10369701 [TBL] [Abstract][Full Text] [Related]
44. IGF2 differentially methylated region hypomethylation in relation to pathological and molecular features of serrated lesions. Naito T; Nosho K; Ito M; Igarashi H; Mitsuhashi K; Yoshii S; Aoki H; Nomura M; Sukawa Y; Yamamoto E; Adachi Y; Takahashi H; Hosokawa M; Fujita M; Takenouchi T; Maruyama R; Suzuki H; Baba Y; Imai K; Yamamoto H; Ogino S; Shinomura Y World J Gastroenterol; 2014 Aug; 20(29):10050-61. PubMed ID: 25110432 [TBL] [Abstract][Full Text] [Related]
45. Early-age-at-onset colorectal cancer and microsatellite instability as markers of hereditary nonpolyposis colorectal cancer. Pucciarelli S; Agostini M; Viel A; Bertorelle R; Russo V; Toppan P; Lise M Dis Colon Rectum; 2003 Mar; 46(3):305-12. PubMed ID: 12626904 [TBL] [Abstract][Full Text] [Related]
46. Family history characteristics, tumor microsatellite instability and germline MSH2 and MLH1 mutations in hereditary colorectal cancer. Bapat BV; Madlensky L; Temple LK; Hiruki T; Redston M; Baron DL; Xia L; Marcus VA; Soravia C; Mitri A; Shen W; Gryfe R; Berk T; Chodirker BN; Cohen Z; Gallinger S Hum Genet; 1999 Feb; 104(2):167-76. PubMed ID: 10190329 [TBL] [Abstract][Full Text] [Related]
47. Molecular screening for hereditary nonpolyposis colorectal cancer: a prospective, population-based study. Percesepe A; Borghi F; Menigatti M; Losi L; Foroni M; Di Gregorio C; Rossi G; Pedroni M; Sala E; Vaccina F; Roncucci L; Benatti P; Viel A; Genuardi M; Marra G; Kristo P; Peltomäki P; Ponz de Leon M J Clin Oncol; 2001 Oct; 19(19):3944-50. PubMed ID: 11579115 [TBL] [Abstract][Full Text] [Related]
48. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer. Bosse T; ter Haar NT; Seeber LM; v Diest PJ; Hes FJ; Vasen HF; Nout RA; Creutzberg CL; Morreau H; Smit VT Mod Pathol; 2013 Nov; 26(11):1525-35. PubMed ID: 23702729 [TBL] [Abstract][Full Text] [Related]
49. Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Peterson LM; Kipp BR; Halling KC; Kerr SE; Smith DI; Distad TJ; Clayton AC; Medeiros F Int J Gynecol Pathol; 2012 May; 31(3):195-205. PubMed ID: 22498935 [TBL] [Abstract][Full Text] [Related]
50. Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Fujiwara T; Stolker JM; Watanabe T; Rashid A; Longo P; Eshleman JR; Booker S; Lynch HT; Jass JR; Green JS; Kim H; Jen J; Vogelstein B; Hamilton SR Am J Pathol; 1998 Oct; 153(4):1063-78. PubMed ID: 9777938 [TBL] [Abstract][Full Text] [Related]
51. Exclusive KRAS mutation in microsatellite-unstable human colorectal carcinomas with sequence alterations in the DNA mismatch repair gene, MLH1. Zhao Y; Miyashita K; Ando T; Kakeji Y; Yamanaka T; Taguchi K; Ushijima T; Oda S; Maehara Y Gene; 2008 Nov; 423(2):188-93. PubMed ID: 18692554 [TBL] [Abstract][Full Text] [Related]
52. Mutational analysis of promoters of mismatch repair genes hMSH2 and hMLH1 in hereditary nonpolyposis colorectal cancer and early onset colorectal cancer patients: identification of three novel germ-line mutations in promoter of the hMSH2 gene. Shin KH; Shin JH; Kim JH; Park JG Cancer Res; 2002 Jan; 62(1):38-42. PubMed ID: 11782355 [TBL] [Abstract][Full Text] [Related]
53. Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Hendriks YM; Jagmohan-Changur S; van der Klift HM; Morreau H; van Puijenbroek M; Tops C; van Os T; Wagner A; Ausems MG; Gomez E; Breuning MH; Bröcker-Vriends AH; Vasen HF; Wijnen JT Gastroenterology; 2006 Feb; 130(2):312-22. PubMed ID: 16472587 [TBL] [Abstract][Full Text] [Related]
54. Co-Occurrence of Familial Non-Medullary Thyroid Cancer (FNMTC) and Hereditary Non-Polyposis Colorectal Cancer (HNPCC) Associated Tumors-A Cohort Study. Aswath K; Welch J; Gubbi S; Veeraraghavan P; Avadhanula S; Gara SK; Dikoglu E; Merino M; Raffeld M; Xi L; Kebebew E; Klubo-Gwiezdzinska J Front Endocrinol (Lausanne); 2021; 12():653401. PubMed ID: 34326811 [TBL] [Abstract][Full Text] [Related]
55. Use of molecular tumor characteristics to prioritize mismatch repair gene testing in early-onset colorectal cancer. Southey MC; Jenkins MA; Mead L; Whitty J; Trivett M; Tesoriero AA; Smith LD; Jennings K; Grubb G; Royce SG; Walsh MD; Barker MA; Young JP; Jass JR; St John DJ; Macrae FA; Giles GG; Hopper JL J Clin Oncol; 2005 Sep; 23(27):6524-32. PubMed ID: 16116158 [TBL] [Abstract][Full Text] [Related]
56. Redundant DNA methylation in colorectal cancers of Lynch-syndrome patients. Alemayehu A; Sebova K; Fridrichova I Genes Chromosomes Cancer; 2008 Oct; 47(10):906-14. PubMed ID: 18618713 [TBL] [Abstract][Full Text] [Related]
57. Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Morak M; Schackert HK; Rahner N; Betz B; Ebert M; Walldorf C; Royer-Pokora B; Schulmann K; von Knebel-Doeberitz M; Dietmaier W; Keller G; Kerker B; Leitner G; Holinski-Feder E Eur J Hum Genet; 2008 Jul; 16(7):804-11. PubMed ID: 18301449 [TBL] [Abstract][Full Text] [Related]
58. BRAF mutation analysis is a valid tool to implement in Lynch syndrome diagnosis in patients classified according to the Bethesda guidelines. Molinari F; Signoroni S; Lampis A; Bertan C; Perrone F; Sala P; Mondini P; Crippa S; Bertario L; Frattini M Tumori; 2014; 100(3):315-20. PubMed ID: 25076244 [TBL] [Abstract][Full Text] [Related]
59. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Llor X; Pons E; Xicola RM; Castells A; Alenda C; Piñol V; Andreu M; Castellví-Bel S; Payá A; Jover R; Bessa X; Girós A; Roca A; Gassull MA; Clin Cancer Res; 2005 Oct; 11(20):7304-10. PubMed ID: 16243801 [TBL] [Abstract][Full Text] [Related]
60. Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel. Vilkin A; Niv Y; Nagasaka T; Morgenstern S; Levi Z; Fireman Z; Fuerst F; Goel A; Boland CR Cancer; 2009 Feb; 115(4):760-9. PubMed ID: 19127559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]