BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 20103128)

  • 21. Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection.
    Sánchez-Martínez ML; Aguilar-Caballos MP; Gómez-Hens A
    Anal Chim Acta; 2009 Mar; 636(1):58-62. PubMed ID: 19231356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates.
    Huy GD; Zhang M; Zuo P; Ye BC
    Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles.
    Wang X; Xu Y; Xu X; Hu K; Xiang M; Li L; Liu F; Li N
    Talanta; 2010 Jul; 82(2):693-7. PubMed ID: 20602956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity.
    Li H; Ma X; Dong J; Qian W
    Anal Chem; 2009 Nov; 81(21):8916-22. PubMed ID: 19824625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles.
    Vasimalai N; Abraham John S
    Biosens Bioelectron; 2013 Apr; 42():267-72. PubMed ID: 23208097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads.
    Bi S; Yan Y; Yang X; Zhang S
    Chemistry; 2009; 15(18):4704-9. PubMed ID: 19291715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles.
    Shang L; Dong S
    Anal Chem; 2009 Feb; 81(4):1465-70. PubMed ID: 19140677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide.
    Wu ZS; Zhang SB; Guo MM; Chen CR; Shen GL; Yu RQ
    Anal Chim Acta; 2007 Feb; 584(1):122-8. PubMed ID: 17386594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection.
    Du B; Li Z; Cheng Y
    Talanta; 2008 May; 75(4):959-64. PubMed ID: 18585169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering.
    Falabella JB; Cho TJ; Ripple DC; Hackley VA; Tarlov MJ
    Langmuir; 2010 Aug; 26(15):12740-7. PubMed ID: 20604538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile and controllable loading of single-stranded DNA on gold nanoparticles.
    Zu Y; Gao Z
    Anal Chem; 2009 Oct; 81(20):8523-8. PubMed ID: 19751052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles.
    Ling J; Li YF; Huang CZ
    Anal Chem; 2009 Feb; 81(4):1707-14. PubMed ID: 19173573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.
    Ma JL; Yin BC; Le HN; Ye BC
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12856-63. PubMed ID: 26024337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies.
    Blakey I; Schiller TL; Merican Z; Fredericks PM
    Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer.
    Zhang JQ; Wang YS; He Y; Jiang T; Yang HM; Tan X; Kang RH; Yuan YK; Shi LF
    Anal Biochem; 2010 Feb; 397(2):212-7. PubMed ID: 19849997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO; Kang T; Lee K; Lee SY; Joo SW
    Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions.
    Liu T; Zhao J; Zhang D; Li G
    Anal Chem; 2010 Jan; 82(1):229-33. PubMed ID: 19954204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectrophotometric determination of cysteine with gold nanoparticles stabilized with single-stranded oligonucleotides.
    Wang Y; Wang J; Yang F; Yang X
    Anal Sci; 2010; 26(5):545-9. PubMed ID: 20467128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescent sensing of homocysteine in urine: using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde.
    Lin JH; Chang CW; Tseng WL
    Analyst; 2010 Jan; 135(1):104-10. PubMed ID: 20024188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.