BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20103148)

  • 1. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation.
    Ugliano M; Henschke PA
    Anal Chim Acta; 2010 Feb; 660(1-2):87-91. PubMed ID: 20103148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine.
    Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA
    J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a method to measure hydrogen sulfide in wine fermentation.
    Park SK
    J Microbiol Biotechnol; 2008 Sep; 18(9):1550-4. PubMed ID: 18852511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ high throughput method for H(2)S detection during micro-scale wine fermentation.
    Winter G; Curtin C
    J Microbiol Methods; 2012 Oct; 91(1):165-70. PubMed ID: 22981795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
    Cordente AG; Heinrich A; Pretorius IS; Swiegers JH
    FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of hydrogen sulphide in humid air by selected ion flow tube mass spectrometry.
    Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(13):1136-40. PubMed ID: 10867689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of hydrogen sulfide in fermentation broths containing SO 2 .
    Acree TE; Sonoff EP; Splittstoesser DF
    Appl Microbiol; 1971 Jul; 22(1):110-2. PubMed ID: 5111300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging.
    Oka K; Hayashi T; Matsumoto N; Yanase H
    J Biosci Bioeng; 2008 Sep; 106(3):253-7. PubMed ID: 18930001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations.
    Ciani M; Beco L; Comitini F
    Int J Food Microbiol; 2006 Apr; 108(2):239-45. PubMed ID: 16487611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a novel passive sampling technique for monitoring volcanogenic hydrogen sulfide.
    Horwell CJ; Allen AG; Mather TA; Patterson JE
    J Environ Monit; 2004 Jul; 6(7):630-5. PubMed ID: 15237295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the volatile compound production of fermentations made from musts with increasing grape content.
    Keyzers RA; Boss PK
    J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.
    Arrizon J; Fiore C; Acosta G; Romano P; Gschaedler A
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):181-9. PubMed ID: 16534541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of beta-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity.
    Fia G; Giovani G; Rosi I
    J Appl Microbiol; 2005; 99(3):509-17. PubMed ID: 16108792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a quantitative screening method for hydrogen sulfide production by cheese-ripening microorganisms: the first step towards l-cysteine catabolism.
    Lopez del Castillo Lozano M; Tâche R; Bonnarme P; Landaud S
    J Microbiol Methods; 2007 Apr; 69(1):70-7. PubMed ID: 17250912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a highly selective fluorescence probe for hydrogen sulfide.
    Sasakura K; Hanaoka K; Shibuya N; Mikami Y; Kimura Y; Komatsu T; Ueno T; Terai T; Kimura H; Nagano T
    J Am Chem Soc; 2011 Nov; 133(45):18003-5. PubMed ID: 21999237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrasound technique for monitoring the alcoholic wine fermentation.
    Lamberti N; Ardia L; Albanese D; Di Matteo M
    Ultrasonics; 2009 Jan; 49(1):94-7. PubMed ID: 18635244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy.
    Nieuwoudt HH; Pretorius IS; Bauer FF; Nel DG; Prior BA
    J Microbiol Methods; 2006 Nov; 67(2):248-56. PubMed ID: 16697064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard.
    Cappello MS; Bleve G; Grieco F; Dellaglio F; Zacheo G
    J Appl Microbiol; 2004; 97(6):1274-80. PubMed ID: 15546418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.
    Colon M; Todolí JL; Hidalgo M; Iglesias M
    Anal Chim Acta; 2008 Feb; 609(2):160-8. PubMed ID: 18261510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption.
    Beltran G; Esteve-Zarzoso B; Rozès N; Mas A; Guillamón JM
    J Agric Food Chem; 2005 Feb; 53(4):996-1002. PubMed ID: 15713011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.