These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20103151)

  • 21. Protein haze formation in white wines: effect of saccharomyces cerevisiae cell wall components prepared with different procedures.
    Lomolino G; Curioni A
    J Agric Food Chem; 2007 Oct; 55(21):8737-44. PubMed ID: 17880153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wine protein haze: mechanisms of formation and advances in prevention.
    Van Sluyter SC; McRae JM; Falconer RJ; Smith PA; Bacic A; Waters EJ; Marangon M
    J Agric Food Chem; 2015 Apr; 63(16):4020-30. PubMed ID: 25847216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds.
    Chagas R; Laia CAT; Ferreira RB; Ferreira LM
    Food Chem; 2018 Sep; 259():166-174. PubMed ID: 29680039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Red Wine Dryness Perception Related to Physicochemistry.
    Watrelot AA; Heymann H; Waterhouse AL
    J Agric Food Chem; 2020 Mar; 68(10):2964-2972. PubMed ID: 30983339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.
    McRae JM; Ziora ZM; Kassara S; Cooper MA; Smith PA
    J Agric Food Chem; 2015 May; 63(17):4345-52. PubMed ID: 25877783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grape and wine proteins: their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis.
    Marangon M; Van Sluyter SC; Haynes PA; Waters EJ
    J Agric Food Chem; 2009 May; 57(10):4415-25. PubMed ID: 19354294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass spectrometry in the analysis of grape and wine proteins.
    Flamini R; De Rosso M
    Expert Rev Proteomics; 2006 Jun; 3(3):321-31. PubMed ID: 16771704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen exposure during red wine fermentation modifies tannin reactivity with poly-l-proline.
    Watrelot AA; Day MP; Schulkin A; Falconer RJ; Smith P; Waterhouse AL; Bindon KA
    Food Chem; 2019 Nov; 297():124923. PubMed ID: 31253258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine.
    Tabilo-Munizaga G; Gordon TA; Villalobos-Carvajal R; Moreno-Osorio L; Salazar FN; Pérez-Won M; Acuña S
    Food Chem; 2014 Jul; 155():214-20. PubMed ID: 24594177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.
    Rowe JD; Harbertson JF; Osborne JP; Freitag M; Lim J; Bakalinsky AT
    J Agric Food Chem; 2010 Feb; 58(4):2337-46. PubMed ID: 20108898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007).
    Chira K; Schmauch G; Saucier C; Fabre S; Teissedre PL
    J Agric Food Chem; 2009 Jan; 57(2):545-53. PubMed ID: 19105642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation.
    Byaruhanga YB; Emmambux MN; Belton PS; Wellner N; Ng KG; Taylor JR
    J Agric Food Chem; 2006 Jun; 54(12):4198-207. PubMed ID: 16756347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing protein-tannin interactions by isothermal titration microcalorimetry.
    Frazier RA; Papadopoulou A; Mueller-Harvey I; Kissoon D; Green RJ
    J Agric Food Chem; 2003 Aug; 51(18):5189-95. PubMed ID: 12926857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. White wine continuous protein stabilization by packed column.
    Pashova V; Güell C; López F
    J Agric Food Chem; 2004 Mar; 52(6):1558-63. PubMed ID: 15030211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes.
    Perutka Z; Šufeisl M; Strnad M; Šebela M
    Biotechnol Appl Biochem; 2019 May; 66(3):398-411. PubMed ID: 30715757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophoretic method for the identification of a haze-active protein in grape seeds.
    Wu LC; Lu YW
    J Agric Food Chem; 2004 May; 52(10):3130-5. PubMed ID: 15137864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance liquid chromatography determination of red wine tannin stickiness.
    Revelette MR; Barak JA; Kennedy JA
    J Agric Food Chem; 2014 Jul; 62(28):6626-31. PubMed ID: 24959945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific and sensitive enzyme-linked immunosorbent assays for analysis of residual allergenic food proteins in commercial bottled wine fined with egg white, milk, and nongrape-derived tannins.
    Rolland JM; Apostolou E; de Leon MP; Stockley CS; O'Hehir RE
    J Agric Food Chem; 2008 Jan; 56(2):349-54. PubMed ID: 18163561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection and Identification of Oxidation Markers of the Reaction of Grape Tannins with Volatile Thiols Commonly Found in Wine.
    Suc L; Rigou P; Mouls L
    J Agric Food Chem; 2021 Mar; 69(10):3199-3208. PubMed ID: 33657810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.