These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20103649)

  • 1. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability.
    Pires IM; Bencokova Z; Milani M; Folkes LK; Li JL; Stratford MR; Harris AL; Hammond EM
    Cancer Res; 2010 Feb; 70(3):925-35. PubMed ID: 20103649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to acute hypoxia induces a transient DNA damage response which includes Chk1 and TLK1.
    Pires IM; Bencokova Z; McGurk C; Hammond EM
    Cell Cycle; 2010 Jul; 9(13):2502-7. PubMed ID: 20581459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting hypoxic cells through the DNA damage response.
    Olcina M; Lecane PS; Hammond EM
    Clin Cancer Res; 2010 Dec; 16(23):5624-9. PubMed ID: 20876254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress.
    Li J; Tan J; Zhuang L; Banerjee B; Yang X; Chau JF; Lee PL; Hande MP; Li B; Yu Q
    Cancer Res; 2007 Dec; 67(23):11317-26. PubMed ID: 18056458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication.
    Foskolou IP; Jorgensen C; Leszczynska KB; Olcina MM; Tarhonskaya H; Haisma B; D'Angiolella V; Myers WK; Domene C; Flashman E; Hammond EM
    Mol Cell; 2017 Apr; 66(2):206-220.e9. PubMed ID: 28416140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges to DNA replication in hypoxic conditions.
    Ng N; Purshouse K; Foskolou IP; Olcina MM; Hammond EM
    FEBS J; 2018 May; 285(9):1563-1571. PubMed ID: 29288533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hypoxia-induced replication arrest with hydroxyurea and aphidicolin-induced arrest.
    Hammond EM; Green SL; Giaccia AJ
    Mutat Res; 2003 Nov; 532(1-2):205-13. PubMed ID: 14643437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation.
    Hammond EM; Dorie MJ; Giaccia AJ
    Cancer Res; 2004 Sep; 64(18):6556-62. PubMed ID: 15374968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage.
    Corn PG; El-Deiry WS
    Cancer Biol Ther; 2007 Dec; 6(12):1858-66. PubMed ID: 18087215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-phase-dependent p50/NF-кB1 phosphorylation in response to ATR and replication stress acts to maintain genomic stability.
    Crawley CD; Kang S; Bernal GM; Wahlstrom JS; Voce DJ; Cahill KE; Garofalo A; Raleigh DR; Weichselbaum RR; Yamini B
    Cell Cycle; 2015; 14(4):566-76. PubMed ID: 25590437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of p53 protein in the cellular response to DNA damage.
    Kastan MB; Onyekwere O; Sidransky D; Vogelstein B; Craig RW
    Cancer Res; 1991 Dec; 51(23 Pt 1):6304-11. PubMed ID: 1933891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis.
    Bhonde MR; Hanski ML; Budczies J; Cao M; Gillissen B; Moorthy D; Simonetta F; Scherübl H; Truss M; Hagemeier C; Mewes HW; Daniel PT; Zeitz M; Hanski C
    J Biol Chem; 2006 Mar; 281(13):8675-85. PubMed ID: 16446370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition.
    Arima Y; Hirota T; Bronner C; Mousli M; Fujiwara T; Niwa S; Ishikawa H; Saya H
    Genes Cells; 2004 Feb; 9(2):131-42. PubMed ID: 15009091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia.
    Denko NC; Green SL; Edwards D; Giaccia AJ
    Exp Cell Res; 2000 Jul; 258(1):82-91. PubMed ID: 10912790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
    Cho SH; Toouli CD; Fujii GH; Crain C; Parry D
    Cell Cycle; 2005 Jan; 4(1):131-9. PubMed ID: 15539958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for CDK2 in maintaining genomic stability.
    Zhu Y
    Cell Cycle; 2004 Nov; 3(11):1358-62. PubMed ID: 15492512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p53 gain-of-function mutations increase Cdc7-dependent replication initiation.
    Datta A; Ghatak D; Das S; Banerjee T; Paul A; Butti R; Gorain M; Ghuwalewala S; Roychowdhury A; Alam SK; Das P; Chatterjee R; Dasgupta M; Panda CK; Kundu GC; Roychoudhury S
    EMBO Rep; 2017 Nov; 18(11):2030-2050. PubMed ID: 28887320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment.
    Scanlon SE; Glazer PM
    DNA Repair (Amst); 2015 Aug; 32():180-189. PubMed ID: 25956861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription pattern of p53-targeted DNA repair genes in the hypoxia-tolerant subterranean mole rat Spalax.
    Shams I; Malik A; Manov I; Joel A; Band M; Avivi A
    J Mol Biol; 2013 Apr; 425(7):1111-8. PubMed ID: 23318952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase.
    Tardat M; Murr R; Herceg Z; Sardet C; Julien E
    J Cell Biol; 2007 Dec; 179(7):1413-26. PubMed ID: 18158331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.