BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 20104575)

  • 1. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular uptake and nanoscale localization of gold nanoparticles in cancer using label-free confocal Raman microscopy.
    Shah NB; Dong J; Bischof JC
    Mol Pharm; 2011 Feb; 8(1):176-84. PubMed ID: 21053973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes.
    Abdullin TI; Bondar OV; Nikitina II; Bulatov ER; Morozov MV; Hilmutdinov AKh; Salakhov MKh; Culha M
    Bioelectrochemistry; 2009 Nov; 77(1):37-42. PubMed ID: 19574110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells.
    Zhang Z; Jia J; Lai Y; Ma Y; Weng J; Sun L
    Bioorg Med Chem; 2010 Aug; 18(15):5528-34. PubMed ID: 20621495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of end group modification of DNA-functionalized gold nanoparticles on cellular uptake in HepG2 cells.
    Hong S; Park S; Park J; Yi J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():415-20. PubMed ID: 24036625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of gold nanoparticles for in vitro siRNA delivery.
    Zhao E; Zhao Z; Wang J; Yang C; Chen C; Gao L; Feng Q; Hou W; Gao M; Zhang Q
    Nanoscale; 2012 Aug; 4(16):5102-9. PubMed ID: 22782309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles.
    Hao Y; Yang X; Song S; Huang M; He C; Cui M; Chen J
    Nanotechnology; 2012 Feb; 23(4):045103. PubMed ID: 22222168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain microvessel endothelial cells responses to gold nanoparticles: In vitro pro-inflammatory mediators and permeability.
    Trickler WJ; Lantz SM; Murdock RC; Schrand AM; Robinson BL; Newport GD; Schlager JJ; Oldenburg SJ; Paule MG; Slikker W; Hussain SM; Ali SF
    Nanotoxicology; 2011 Dec; 5(4):479-92. PubMed ID: 21175299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface charge of gold nanoparticles mediates mechanism of toxicity.
    Schaeublin NM; Braydich-Stolle LK; Schrand AM; Miller JM; Hutchison J; Schlager JJ; Hussain SM
    Nanoscale; 2011 Feb; 3(2):410-20. PubMed ID: 21229159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry.
    Marquis BJ; Liu Z; Braun KL; Haynes CL
    Analyst; 2011 Sep; 136(17):3478-86. PubMed ID: 21170444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single laser pulse induced aggregation of gold nanoparticles.
    Matsuo N; Muto H; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2007 Dec; 9(45):6027-31. PubMed ID: 18004417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles.
    Kong T; Zeng J; Wang X; Yang X; Yang J; McQuarrie S; McEwan A; Roa W; Chen J; Xing JZ
    Small; 2008 Sep; 4(9):1537-43. PubMed ID: 18712753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional gold nanoparticle-peptide complexes as cell-targeting agents.
    Sun L; Liu D; Wang Z
    Langmuir; 2008 Sep; 24(18):10293-7. PubMed ID: 18715022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface oxidation on the interaction of 1-methylaminopyrene with gold nanoparticles.
    Zhang J; Riabinina D; Chaker M; Ma D
    Langmuir; 2012 Feb; 28(5):2858-65. PubMed ID: 22214268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide.
    Pujals S; Bastús NG; Pereiro E; López-Iglesias C; Puntes VF; Kogan MJ; Giralt E
    Chembiochem; 2009 Apr; 10(6):1025-31. PubMed ID: 19322842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of amino acids using gold nanoparticles in electrokinetic chromatography-thermal lens microscopy.
    Kitagawa F; Akimoto Y; Otsuka K
    J Chromatogr A; 2009 Apr; 1216(14):2943-6. PubMed ID: 18723173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.