These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
473 related articles for article (PubMed ID: 20104621)
1. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621 [TBL] [Abstract][Full Text] [Related]
2. Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics. Sarma AD; Emerich DW Proteomics; 2005 Nov; 5(16):4170-84. PubMed ID: 16254929 [TBL] [Abstract][Full Text] [Related]
3. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Sugawara M; Shah GR; Sadowsky MJ; Paliy O; Speck J; Vail AW; Gyaneshwar P Mol Plant Microbe Interact; 2011 Apr; 24(4):451-7. PubMed ID: 21190435 [TBL] [Abstract][Full Text] [Related]
5. Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Brechenmacher L; Kim MY; Benitez M; Li M; Joshi T; Calla B; Lee MP; Libault M; Vodkin LO; Xu D; Lee SH; Clough SJ; Stacey G Mol Plant Microbe Interact; 2008 May; 21(5):631-45. PubMed ID: 18393623 [TBL] [Abstract][Full Text] [Related]
6. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836 [TBL] [Abstract][Full Text] [Related]
8. A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells. Libault M; Govindarajulu M; Berg RH; Ong YT; Puricelli K; Taylor CG; Xu D; Stacey G Mol Plant Microbe Interact; 2011 Sep; 24(9):1051-60. PubMed ID: 21815830 [TBL] [Abstract][Full Text] [Related]
9. The PhyR-sigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Gourion B; Sulser S; Frunzke J; Francez-Charlot A; Stiefel P; Pessi G; Vorholt JA; Fischer HM Mol Microbiol; 2009 Jul; 73(2):291-305. PubMed ID: 19555458 [TBL] [Abstract][Full Text] [Related]
10. Copper metallochaperones are required for the assembly of bacteroid cytochrome c oxidase which is functioning for nitrogen fixation in soybean nodules. Arunothayanan H; Nomura M; Hamaguchi R; Itakura M; Minamisawa K; Tajima S Plant Cell Physiol; 2010 Jul; 51(7):1242-6. PubMed ID: 20519277 [TBL] [Abstract][Full Text] [Related]
11. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. Stockwell SB; Reutimann L; Guerinot ML Mol Plant Microbe Interact; 2012 Jan; 25(1):119-28. PubMed ID: 21879796 [TBL] [Abstract][Full Text] [Related]
12. An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. Benson HP; Boncompagni E; Guerinot ML Mol Plant Microbe Interact; 2005 Sep; 18(9):950-9. PubMed ID: 16167765 [TBL] [Abstract][Full Text] [Related]
13. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Speck JJ; James EK; Sugawara M; Sadowsky MJ; Gyaneshwar P Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31562172 [TBL] [Abstract][Full Text] [Related]
14. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum CPAC 15: spotlighting "hypothetical proteins". Batista JS; Torres AR; Hungria M Proteomics; 2010 Sep; 10(17):3176-89. PubMed ID: 20806226 [TBL] [Abstract][Full Text] [Related]
15. A novel genetic locus outside the symbiotic island is required for effective symbiosis of Bradyrhizobium japonicum with soybean Glycine max. Becker BU; Bonnard N; Boiffin V; Mörschel E; Tresierra A; Müller P Res Microbiol; 2004 Nov; 155(9):770-80. PubMed ID: 15501655 [TBL] [Abstract][Full Text] [Related]
16. Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum. Lindemann A; Koch M; Pessi G; Müller AJ; Balsiger S; Hennecke H; Fischer HM FEMS Microbiol Lett; 2010 Nov; 312(2):184-91. PubMed ID: 20883496 [TBL] [Abstract][Full Text] [Related]
17. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study. Vauclare P; Bligny R; Gout E; Widmer F FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054 [TBL] [Abstract][Full Text] [Related]
18. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Lardi M; Murset V; Fischer HM; Mesa S; Ahrens CH; Zamboni N; Pessi G Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240350 [TBL] [Abstract][Full Text] [Related]
19. [Efficacy of biological preparations of soybean root nodule bacteria modified with a homologous lectin]. Sytnikov DM; Kots' SIa; Datsenko VK Prikl Biokhim Mikrobiol; 2007; 43(3):304-10. PubMed ID: 17619577 [TBL] [Abstract][Full Text] [Related]
20. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Koch M; Delmotte N; Rehrauer H; Vorholt JA; Pessi G; Hennecke H Mol Plant Microbe Interact; 2010 Jun; 23(6):784-90. PubMed ID: 20459317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]