These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 2010465)
1. Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua. Billger M; Strömberg E; Wallin M J Cell Biol; 1991 Apr; 113(2):331-8. PubMed ID: 2010465 [TBL] [Abstract][Full Text] [Related]
2. Assembly of Atlantic cod (Gadus morhua) brain microtubules at different temperatures: dependency of microtubule-associated proteins is relative to temperature. Wallin M; Billger M; Strömberg T; Strömberg E Arch Biochem Biophys; 1993 Nov; 307(1):200-5. PubMed ID: 8239657 [TBL] [Abstract][Full Text] [Related]
3. Differences in the effect of Ca2+ on isolated microtubules from cod and cow brain. Strömberg E; Wallin M Cell Motil Cytoskeleton; 1994; 28(1):59-68. PubMed ID: 8044850 [TBL] [Abstract][Full Text] [Related]
4. Unusual properties of a cold-labile fraction of Atlantic cod (Gadus morhua) brain microtubules. Strömberg E; Serrano L; Avila J; Wallin M Biochem Cell Biol; 1989; 67(11-12):791-800. PubMed ID: 2515888 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of the colchicine binding site and the assembly of fish and mammalian microtubule proteins. de Pereda JM; Wallin M; Billger M; Andreu JM Cell Motil Cytoskeleton; 1995; 30(2):153-63. PubMed ID: 7606808 [TBL] [Abstract][Full Text] [Related]
6. Different assembly properties of cod, bovine, and rat brain microtubules. Fridén B; Strömberg E; Wallin M Cell Motil Cytoskeleton; 1992; 21(4):305-12. PubMed ID: 1628326 [TBL] [Abstract][Full Text] [Related]
7. Different stability of posttranslationally modified brain microtubules isolated from cold-temperate fish. Modig C; Strömberg E; Wallin M Mol Cell Biochem; 1994 Jan; 130(2):137-47. PubMed ID: 8028593 [TBL] [Abstract][Full Text] [Related]
8. Distribution of acetylated tubulin in cultured cells and tissues from the Atlantic cod (Gadus morhua). Role of acetylation in cold adaptation and drug stability. Rutberg M; Billger M; Modig C; Wallin M Cell Biol Int; 1995 Sep; 19(9):749-58. PubMed ID: 7581226 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and steady-state analysis of microtubules in the presence of colchicine. Deery WJ; Weisenberg RC Biochemistry; 1981 Apr; 20(8):2316-24. PubMed ID: 7236603 [TBL] [Abstract][Full Text] [Related]
10. Detyrosination of tubulin is not correlated to cold-adaptation of microtubules in cultured cells from the Atlantic cod (Gadus morhua). Rutberg M; Modig C; Wallin M Histochem J; 1996 Jul; 28(7):511-21. PubMed ID: 8872141 [TBL] [Abstract][Full Text] [Related]
11. Coassembly of bovine and cod microtubule proteins: the ratio of the different tubulins within hybrid microtubules determines the ability to assemble at low temperatures, MAPs dependency and effects of Ca2+. Wallin M; Billger M Cell Motil Cytoskeleton; 1997; 38(3):297-307. PubMed ID: 9384220 [TBL] [Abstract][Full Text] [Related]
12. Comparative effects of cryosolvents on tubulin association, thermal stability, and binding of microtubule-associated proteins. Pajot-Augy E Cryobiology; 1993 Jun; 30(3):286-98. PubMed ID: 8370315 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Skoufias DA; Wilson L Biochemistry; 1992 Jan; 31(3):738-46. PubMed ID: 1731931 [TBL] [Abstract][Full Text] [Related]
14. Identification of betaIII- and betaIV-tubulin isotypes in cold-adapted microtubules from Atlantic cod (Gadus morhua): antibody mapping and cDNA sequencing. Modig C; Olsson PE; Barasoain I; de Ines C; Andreu JM; Roach MC; Ludueña RF; Wallin M Cell Motil Cytoskeleton; 1999; 42(4):315-30. PubMed ID: 10223637 [TBL] [Abstract][Full Text] [Related]
15. The role of GTP Binding and microtubule-associated proteins in the inhibition of microtubule assembly by carbendazim. Winder BS; Strandgaard CS; Miller MG Toxicol Sci; 2001 Jan; 59(1):138-46. PubMed ID: 11134553 [TBL] [Abstract][Full Text] [Related]
16. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules. Fridén B; Wallin M Mol Cell Biochem; 1991 Jul; 105(2):149-58. PubMed ID: 1681420 [TBL] [Abstract][Full Text] [Related]
17. Calpain processing of brain microtubules from the Atlantic cod, Gadus morhua. Billger M; Nilsson E; Karlsson JO; Wallin M Mol Cell Biochem; 1993 Apr; 121(1):85-92. PubMed ID: 8510675 [TBL] [Abstract][Full Text] [Related]
18. The stabilization of microtubules in isolated spindles by tubulin-colchicine complex. Hays TS; Salmon ED Cell Motil Cytoskeleton; 1986; 6(3):282-90. PubMed ID: 3742623 [TBL] [Abstract][Full Text] [Related]
19. Traces of brain microtubule-associated proteins affect dynamic properties of microtubules. Keates RA Biochem Cell Biol; 1990 Oct; 68(10):1202-9. PubMed ID: 2268415 [TBL] [Abstract][Full Text] [Related]
20. Promotion of microtubule assembly by neurofilament-associated microtubule-associated proteins. Leterrier JF; Wong J; Liem RK; Shelanski ML J Neurochem; 1984 Nov; 43(5):1385-91. PubMed ID: 6541680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]