These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20104948)

  • 1. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission.
    Huang W; Han M; Liu K
    Math Biosci Eng; 2010 Jan; 7(1):51-66. PubMed ID: 20104948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An SIS patch model with variable transmission coefficients.
    Gao D; Ruan S
    Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An age-structured two-strain epidemic model with super-infection.
    Li XZ; Liu JX; Martcheva M
    Math Biosci Eng; 2010 Jan; 7(1):123-47. PubMed ID: 20104952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear incidence and stability of infectious disease models.
    Korobeinikov A; Maini PK
    Math Med Biol; 2005 Jun; 22(2):113-28. PubMed ID: 15778334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global properties of infectious disease models with nonlinear incidence.
    Korobeinikov A
    Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission.
    Korobeinikov A
    Bull Math Biol; 2006 Apr; 68(3):615-26. PubMed ID: 16794947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and bifurcations in an epidemic model with varying immunity period.
    Blyuss KB; Kyrychko YN
    Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global stability for epidemic model with constant latency and infectious periods.
    Huang G; Beretta E; Takeuchi Y
    Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global stability of the steady states of an epidemic model incorporating intervention strategies.
    Kang Y; Wang W; Cai Y
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1071-1089. PubMed ID: 29161851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of SIR epidemic models with nonlinear incidence rate and treatment.
    Hu Z; Ma W; Ruan S
    Math Biosci; 2012 Jul; 238(1):12-20. PubMed ID: 22516532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
    Huang G; Takeuchi Y; Ma W; Wei D
    Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of group mixing on disease dynamics.
    van den Driessche P; Wang L; Zou X
    Math Biosci; 2010 Nov; 228(1):71-7. PubMed ID: 20801132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic epidemic models: a survey.
    Britton T
    Math Biosci; 2010 May; 225(1):24-35. PubMed ID: 20102724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An epidemic model in a patchy environment.
    Wang W; Zhao XQ
    Math Biosci; 2004 Jul; 190(1):97-112. PubMed ID: 15172805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases.
    Melnik AV; Korobeinikov A
    Math Biosci Eng; 2011 Oct; 8(4):1019-34. PubMed ID: 21936598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-autonomous multi-strain SIS epidemic model.
    Martcheva M
    J Biol Dyn; 2009 Mar; 3(2-3):235-51. PubMed ID: 22880832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.