These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20105223)

  • 21. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments.
    Daghio M; Vaiopoulou E; Patil SA; Suárez-Suárez A; Head IM; Franzetti A; Rabaey K
    Appl Environ Microbiol; 2016 Jan; 82(1):297-307. PubMed ID: 26497463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation.
    Williams KH; Nevin KP; Franks A; Englert A; Long PE; Lovley DR
    Environ Sci Technol; 2010 Jan; 44(1):47-54. PubMed ID: 19921843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation.
    Cupples AM
    J Microbiol Methods; 2011 May; 85(2):83-91. PubMed ID: 21356251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic bioremediation in a solvent-contaminated alluvial groundwater.
    Williams RA; Shuttle KA; Kunkler JL; Madsen EL; Hooper SW
    J Ind Microbiol Biotechnol; 1997; 18(2-3):177-88. PubMed ID: 9134765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.
    Zhang T; Tremblay PL; Chaurasia AK; Smith JA; Bain TS; Lovley DR
    Appl Environ Microbiol; 2013 Dec; 79(24):7800-6. PubMed ID: 24096430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site.
    Butler JE; He Q; Nevin KP; He Z; Zhou J; Lovley DR
    BMC Genomics; 2007 Jun; 8():180. PubMed ID: 17578578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remediation and recovery of uranium from contaminated subsurface environments with electrodes.
    Gregory KB; Lovley DR
    Environ Sci Technol; 2005 Nov; 39(22):8943-7. PubMed ID: 16323798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation.
    Mesarch MB; Nakatsu CH; Nies L
    Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene.
    Mak KS; Griebler C; Meckenstock RU; Liedl R; Peter A
    J Contam Hydrol; 2006 Dec; 88(3-4):306-20. PubMed ID: 17011071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of potential anaerobic biotransformation of organic pollutants in sediment caps.
    Smith AM; Kirisits MJ; Reible DD
    N Biotechnol; 2012 Nov; 30(1):80-7. PubMed ID: 22749900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of anaerobic microbial o-xylene degradation by toluene in sulfidogenic sediment columns and pure cultures.
    Meckenstock RU; Warthmann RJ; Schäfer W
    FEMS Microbiol Ecol; 2004 Mar; 47(3):381-6. PubMed ID: 19712326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological treatment characteristics of benzene and toluene in a biofilter packed with cylindrical activated carbon.
    Li GW; Hu HY; Hao JM; Zhang HQ
    Water Sci Technol; 2002; 46(11-12):51-6. PubMed ID: 12523732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.
    da Silva Nunes-Halldorson V; Steiner RL; Smith GB
    Ecotoxicol Environ Saf; 2004 Feb; 57(2):162-7. PubMed ID: 14759662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer.
    Botton S; van Harmelen M; Braster M; Parsons JR; Röling WF
    FEMS Microbiol Ecol; 2007 Oct; 62(1):118-30. PubMed ID: 17784862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material.
    Kazy SK; Monier AL; Alvarez PJ
    Biodegradation; 2010 Sep; 21(5):793-800. PubMed ID: 20204467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.
    Strycharz SM; Glaven RH; Coppi MV; Gannon SM; Perpetua LA; Liu A; Nevin KP; Lovley DR
    Bioelectrochemistry; 2011 Feb; 80(2):142-50. PubMed ID: 20696622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma.
    Nicholson CA; Fathepure BZ
    FEMS Microbiol Lett; 2005 Apr; 245(2):257-62. PubMed ID: 15837380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment.
    Winderl C; Penning H; Netzer Fv; Meckenstock RU; Lueders T
    ISME J; 2010 Oct; 4(10):1314-25. PubMed ID: 20428224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.