BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 2010546)

  • 1. Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides.
    Mancini GM; Beerens CE; Aula PP; Verheijen FW
    J Clin Invest; 1991 Apr; 87(4):1329-35. PubMed ID: 2010546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides.
    Mancini GM; de Jonge HR; Galjaard H; Verheijen FW
    J Biol Chem; 1989 Sep; 264(26):15247-54. PubMed ID: 2768261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional reconstitution of the lysosomal sialic acid carrier into proteoliposomes.
    Mancini GM; Beerens CE; Galjaard H; Verheijen FW
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6609-13. PubMed ID: 1631163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective glucuronic acid transport from lysosomes of infantile free sialic acid storage disease fibroblasts.
    Blom HJ; Andersson HC; Seppala R; Tietze F; Gahl WA
    Biochem J; 1990 Jun; 268(3):621-5. PubMed ID: 2363700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infantile sialic acid storage disease: biochemical studies.
    Berra B; Gornati R; Rapelli S; Gatti R; Mancini GM; Ciana G; Bembi B
    Am J Med Genet; 1995 Jul; 58(1):24-31. PubMed ID: 7573152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter.
    Havelaar AC; Mancini GM; Beerens CE; Souren RM; Verheijen FW
    J Biol Chem; 1998 Dec; 273(51):34568-74. PubMed ID: 9852127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose transport in lysosomal membrane vesicles. Kinetic demonstration of a carrier for neutral hexoses.
    Mancini GM; Beerens CE; Verheijen FW
    J Biol Chem; 1990 Jul; 265(21):12380-7. PubMed ID: 2373697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defective lysosomal egress of free sialic acid (N-acetylneuraminic acid) in fibroblasts of patients with infantile free sialic acid storage disease.
    Tietze F; Seppala R; Renlund M; Hopwood JJ; Harper GS; Thomas GH; Gahl WA
    J Biol Chem; 1989 Sep; 264(26):15316-22. PubMed ID: 2768266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of lysosomal sialic acid metabolism: retention of sialic acid by Salla disease lysosomes.
    Jonas AJ
    Biochem Biophys Res Commun; 1986 May; 137(1):175-81. PubMed ID: 3718508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Lysosomal membrane transport disorders--cystinosis and sialic acid storage disorders (Salla disease, ISSD)].
    Yano T; Ohno K
    Nihon Rinsho; 1995 Dec; 53(12):3068-71. PubMed ID: 8577060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the defect underlying the lysosomal storage of sialic acid in Salla disease. Lysosomal accumulation of sialic acid formed from N-acetyl-mannosamine or derived from low density lipoprotein in cultured mutant fibroblasts.
    Renlund M; Kovanen PT; Raivio KO; Aula P; Gahmberg CG; Ehnholm C
    J Clin Invest; 1986 Feb; 77(2):568-74. PubMed ID: 3944269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genetic disorders of N-acetylneuraminic acid metabolism: sialurias and sialidoses].
    Strecker G
    C R Seances Soc Biol Fil; 1985; 179(5):567-76. PubMed ID: 2938684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal handling of free sialic acid in normal humans and patients with Salla disease or renal disease.
    Seppala R; Renlund M; Bernardini I; Tietze F; Gahl WA
    Lab Invest; 1990 Aug; 63(2):197-203. PubMed ID: 2381164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective lysosomal release of glycoprotein-derived sialic acid in fibroblasts from patients with sialic acid storage disease.
    Mendla K; Baumkötter J; Rosenau C; Ulrich-Bott B; Cantz M
    Biochem J; 1988 Feb; 250(1):261-7. PubMed ID: 2451509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infantile sialic acid storage disease: the fate of biosynthetically labeled N-acetyl-(3H)-neuraminic acid in cultured human fibroblasts.
    Paschke E; Höfler G; Roscher A
    Pediatr Res; 1986 Aug; 20(8):773-7. PubMed ID: 2942833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free N-acetylneuraminic acid (NANA) storage disorders: evidence for defective NANA transport across the lysosomal membrane.
    Mancini GM; Verheijen FW; Galjaard H
    Hum Genet; 1986 Jul; 73(3):214-7. PubMed ID: 3733077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of lysosomal proteinases in health and disease.
    Mach L
    Biol Chem; 2002 May; 383(5):751-6. PubMed ID: 12108539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases.
    Verheijen FW; Verbeek E; Aula N; Beerens CE; Havelaar AC; Joosse M; Peltonen L; Aula P; Galjaard H; van der Spek PJ; Mancini GM
    Nat Genet; 1999 Dec; 23(4):462-5. PubMed ID: 10581036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genistein inhibits glucose and sulphate transport in isolated rat liver lysosomes.
    Chou HF; Chuang KH; Tsai YS; Chen YJ
    Br J Nutr; 2010 Jan; 103(2):197-205. PubMed ID: 19747417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional role for histidyl residues of the UDP-glucuronic acid carrier in rat liver endoplasmic reticulum membranes.
    Battaglia E; Radominska-Pandya A
    Biochemistry; 1998 Jan; 37(1):258-63. PubMed ID: 9425046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.