These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20106539)

  • 1. A strategic model for epidemic control in aquaculture.
    Green DM
    Prev Vet Med; 2010 Apr; 94(1-2):119-27. PubMed ID: 20106539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using simple models to review the application and implications of different approaches used to simulate transmission of pathogens among aquatic animals.
    Murray AG
    Prev Vet Med; 2009 Mar; 88(3):167-77. PubMed ID: 18930326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effectiveness of fallowing strategies in disease control in salmon aquaculture assessed with an SIS model.
    Werkman M; Green DM; Murray AG; Turnbull JF
    Prev Vet Med; 2011 Jan; 98(1):64-73. PubMed ID: 21040988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian analysis of animal movements related to factors at herd and between herd levels: Implications for disease spread modeling.
    Lindström T; Sisson SA; Lewerin SS; Wennergren U
    Prev Vet Med; 2011 Mar; 98(4):230-42. PubMed ID: 21176982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of immunostimulants in fish larval aquaculture.
    Bricknell I; Dalmo RA
    Fish Shellfish Immunol; 2005 Nov; 19(5):457-72. PubMed ID: 15890531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The choice of disease control strategies to secure international market access for aquaculture products.
    Chinabut S; Puttinaowarat S
    Dev Biol (Basel); 2005; 121():255-61. PubMed ID: 15962488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic model for the assessment of the transmission pathways of heart and skeleton muscle inflammation, pancreas disease and infectious salmon anaemia in marine fish farms in Norway.
    Aldrin M; Storvik B; Frigessi A; Viljugrein H; Jansen PA
    Prev Vet Med; 2010 Jan; 93(1):51-61. PubMed ID: 19811843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling for disease preparedness and response.
    Murray AG; Raynard RS
    Dev Biol (Basel); 2007; 129():41-51. PubMed ID: 18306518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration.
    Jesse M; Ezanno P; Davis S; Heesterbeek JA
    J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation study to assess the efficiency of a test-and-cull scheme to control the spread of the bovine viral-diarrhoea virus in a dairy herd.
    Viet AF; Fourichon C; Seegers H
    Prev Vet Med; 2006 Oct; 76(3-4):151-66. PubMed ID: 16774794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the effect of urbanization on the transmission of an infectious disease.
    Zhang P; Atkinson PM
    Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of contagious bovine pleuropneumonia transmission dynamics in East Africa.
    Mariner JC; McDermott J; Heesterbeek JA; Thomson G; Martin SW
    Prev Vet Med; 2006 Jan; 73(1):55-74. PubMed ID: 16242799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quarantine in a multi-species epidemic model with spatial dynamics.
    Arino J; Jordan R; van den Driessche P
    Math Biosci; 2007 Mar; 206(1):46-60. PubMed ID: 16343557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemic diseases and host clustering: an optimum cluster size ensures maximum survival.
    Watve MG; Jog MM
    J Theor Biol; 1997 Jan; 184(2):165-9. PubMed ID: 9059596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics of the epidemic transmission in a predator-prey system.
    Su M; Hui C; Zhang Y; Li Z
    Bull Math Biol; 2008 Nov; 70(8):2195-210. PubMed ID: 18696164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of the spread of the bovine viral-diarrhoea virus within a dairy herd.
    Viet AF; Fourichon C; Seegers H; Jacob C; Guihenneuc-Jouyaux C
    Prev Vet Med; 2004 May; 63(3-4):211-36. PubMed ID: 15158572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs.
    Villanueva B; Fernández J; García-Cortés LA; Varona L; Daetwyler HD; Toro MA
    J Anim Sci; 2011 Nov; 89(11):3433-42. PubMed ID: 21742941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models.
    Block GL; Allen LJ
    Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.