These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20106655)

  • 1. Principles governing oligomer formation in amyloidogenic peptides.
    Straub JE; Thirumalai D
    Curr Opin Struct Biol; 2010 Apr; 20(2):187-95. PubMed ID: 20106655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a molecular theory of early and late events in monomer to amyloid fibril formation.
    Straub JE; Thirumalai D
    Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation.
    Reddy G; Straub JE; Thirumalai D
    J Phys Chem B; 2009 Jan; 113(4):1162-72. PubMed ID: 19125574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
    Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG
    ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Mechanism of Amyloid Fibril Formation.
    Galzitskaya O
    Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism.
    Nguyen PH; Li MS; Stock G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):111-6. PubMed ID: 17190811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.
    Kahler A; Sticht H; Horn AH
    PLoS One; 2013; 8(7):e70521. PubMed ID: 23936224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replica exchange simulations of the thermodynamics of Abeta fibril growth.
    Takeda T; Klimov DK
    Biophys J; 2009 Jan; 96(2):442-52. PubMed ID: 19167295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disordered versus fibril-like amyloid β (25-35) dimers in water: structure and thermodynamics.
    Kittner M; Knecht V
    J Phys Chem B; 2010 Nov; 114(46):15288-95. PubMed ID: 20964446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact fibril-like structure of amyloid β-peptide (1-42) monomers.
    Barz B; Buell AK; Nath S
    Chem Commun (Camb); 2021 Jan; 57(7):947-950. PubMed ID: 33399148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Aβ16-21 dissociation from a fibril: Enthalpy, entropy, and volumetric properties.
    Rao Jampani S; Mahmoudinobar F; Su Z; Dias CL
    Proteins; 2015 Nov; 83(11):1963-72. PubMed ID: 26264694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide.
    Michaels TCT; Šarić A; Curk S; Bernfur K; Arosio P; Meisl G; Dear AJ; Cohen SIA; Dobson CM; Vendruscolo M; Linse S; Knowles TPJ
    Nat Chem; 2020 May; 12(5):445-451. PubMed ID: 32284577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and thermodynamic stability comparison for the fibrillar form of small amyloid-β(1-42) oligomers using scaled molecular dynamics.
    Saha D; Jana B
    Phys Chem Chem Phys; 2021 Aug; 23(31):16897-16908. PubMed ID: 34328153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation.
    Xie H; Rojas A; Maisuradze GG; Khelashvili G
    ACS Chem Neurosci; 2022 Apr; 13(7):987-1001. PubMed ID: 35258946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water.
    Lee C; Ham S
    J Comput Chem; 2011 Jan; 32(2):349-55. PubMed ID: 20734314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.
    Sasmal S; Schwierz N; Head-Gordon T
    J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.