These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 20106874)

  • 1. A primary cilia-dependent etiology for midline facial disorders.
    Brugmann SA; Allen NC; James AW; Mekonnen Z; Madan E; Helms JA
    Hum Mol Genet; 2010 Apr; 19(8):1577-92. PubMed ID: 20106874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ciliopathy with hydrocephalus, isolated craniosynostosis, hypertelorism, and clefting caused by deletion of Kif3a.
    Liu B; Chen S; Johnson C; Helms JA
    Reprod Toxicol; 2014 Sep; 48():88-97. PubMed ID: 24887031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural crest cells utilize primary cilia to regulate ventral forebrain morphogenesis via Hedgehog-dependent regulation of oriented cell division.
    Schock EN; Brugmann SA
    Dev Biol; 2017 Nov; 431(2):168-178. PubMed ID: 28941984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2.
    Chang CF; Schock EN; O'Hare EA; Dodgson J; Cheng HH; Muir WM; Edelmann RE; Delany ME; Brugmann SA
    Development; 2014 Aug; 141(15):3003-12. PubMed ID: 25053433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hedgehog receptor function during craniofacial development.
    Xavier GM; Seppala M; Barrell W; Birjandi AA; Geoghegan F; Cobourne MT
    Dev Biol; 2016 Jul; 415(2):198-215. PubMed ID: 26875496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cilia-dependent GLI processing in neural crest cells is required for tongue development.
    Millington G; Elliott KH; Chang YT; Chang CF; Dlugosz A; Brugmann SA
    Dev Biol; 2017 Apr; 424(2):124-137. PubMed ID: 28286175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SP8 regulates signaling centers during craniofacial development.
    Kasberg AD; Brunskill EW; Steven Potter S
    Dev Biol; 2013 Sep; 381(2):312-23. PubMed ID: 23872235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms.
    Kolpakova-Hart E; Jinnin M; Hou B; Fukai N; Olsen BR
    Dev Biol; 2007 Sep; 309(2):273-84. PubMed ID: 17698054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ciliary Hedgehog signaling regulates cell survival to build the facial midline.
    Abrams SR; Reiter JF
    Elife; 2021 Oct; 10():. PubMed ID: 34672258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tissue-specific role for intraflagellar transport genes during craniofacial development.
    Schock EN; Struve JN; Chang CF; Williams TJ; Snedeker J; Attia AC; Stottmann RW; Brugmann SA
    PLoS One; 2017; 12(3):e0174206. PubMed ID: 28346501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleft Palate and Aglossia Result From Perturbations in Wnt and Hedgehog Signaling.
    Yuan G; Singh G; Chen S; Perez KC; Wu Y; Liu B; Helms JA
    Cleft Palate Craniofac J; 2017 May; 54(3):269-280. PubMed ID: 27259005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis.
    Hu D; Helms JA
    Development; 1999 Nov; 126(21):4873-84. PubMed ID: 10518503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline.
    Chang CF; Chang YT; Millington G; Brugmann SA
    PLoS Genet; 2016 Nov; 12(11):e1006351. PubMed ID: 27802276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sonic hedgehog-regulated genes and biological processes in the cranial neural crest mesenchyme by comparative transcriptomics.
    Everson JL; Fink DM; Chung HM; Sun MR; Lipinski RJ
    BMC Genomics; 2018 Jun; 19(1):497. PubMed ID: 29945554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The correlative hypotheses between Pitchfork and Kif3a in palate development.
    Li S; Jin S; Jin C
    Med Hypotheses; 2019 May; 126():23-25. PubMed ID: 31010494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death.
    Ahlgren SC; Bronner-Fraser M
    Curr Biol; 1999 Nov; 9(22):1304-14. PubMed ID: 10574760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development.
    Quintana AM; Hernandez JA; Gonzalez CG
    PLoS One; 2017; 12(7):e0180856. PubMed ID: 28686747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling by SHH rescues facial defects following blockade in the brain.
    Chong HJ; Young NM; Hu D; Jeong J; McMahon AP; Hallgrimsson B; Marcucio RS
    Dev Dyn; 2012 Feb; 241(2):247-56. PubMed ID: 22275045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping up and shipping out: the role of cilia in growth and patterning.
    Brugmann S; Helms J
    J Musculoskelet Neuronal Interact; 2007; 7(4):300. PubMed ID: 18094481
    [No Abstract]   [Full Text] [Related]  

  • 20. Truncating variants of the sterol recognition region of SHH cause hypertelorism phenotype rather than hypotelorism-holoprosencephaly.
    Yamada M; Mizuno S; Inaba M; Uehara T; Inagaki H; Suzuki H; Miya F; Takenouchi T; Kurahashi H; Kosaki K
    Am J Med Genet A; 2024 Aug; 194(8):e63614. PubMed ID: 38562108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.