These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity. Ma Y; Cress WD Oncogene; 2007 May; 26(24):3532-40. PubMed ID: 17173074 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. Gebara MM; Sayre MH; Corden JL J Cell Biochem; 1997 Mar; 64(3):390-402. PubMed ID: 9057097 [TBL] [Abstract][Full Text] [Related]
6. HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. Deng L; Ammosova T; Pumfery A; Kashanchi F; Nekhai S J Biol Chem; 2002 Sep; 277(37):33922-9. PubMed ID: 12114499 [TBL] [Abstract][Full Text] [Related]
7. Activation of p27Kip1 Expression by E2F1. A negative feedback mechanism. Wang C; Hou X; Mohapatra S; Ma Y; Cress WD; Pledger WJ; Chen J J Biol Chem; 2005 Apr; 280(13):12339-43. PubMed ID: 15713665 [TBL] [Abstract][Full Text] [Related]
8. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. Zaborowska J; Baumli S; Laitem C; O'Reilly D; Thomas PH; O'Hare P; Murphy S PLoS One; 2014; 9(9):e107654. PubMed ID: 25233083 [TBL] [Abstract][Full Text] [Related]
10. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
11. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Cheng SW; Kuzyk MA; Moradian A; Ichu TA; Chang VC; Tien JF; Vollett SE; Griffith M; Marra MA; Morin GB Mol Cell Biol; 2012 Nov; 32(22):4691-704. PubMed ID: 22988298 [TBL] [Abstract][Full Text] [Related]
12. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Schneider S; Pei Y; Shuman S; Schwer B Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361 [TBL] [Abstract][Full Text] [Related]
13. CDK7 kinase activity promotes RNA polymerase II promoter escape by facilitating initiation factor release. Velychko T; Mohammad E; Ferrer-Vicens I; Parfentev I; Werner M; Studniarek C; Schwalb B; Urlaub H; Murphy S; Cramer P; Lidschreiber M Mol Cell; 2024 Jun; 84(12):2287-2303.e10. PubMed ID: 38821049 [TBL] [Abstract][Full Text] [Related]
14. Direct repression of the human IRF-3 promoter by E2F1. Xu HG; Ren W; Zou L; Wang Y; Jin R; Zhou GP Immunogenetics; 2011 Apr; 63(4):189-96. PubMed ID: 21225257 [TBL] [Abstract][Full Text] [Related]
15. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Rubin SM; Gall AL; Zheng N; Pavletich NP Cell; 2005 Dec; 123(6):1093-106. PubMed ID: 16360038 [TBL] [Abstract][Full Text] [Related]
16. The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression. Hou T; Ray S; Brasier AR J Biol Chem; 2007 Dec; 282(51):37091-102. PubMed ID: 17956865 [TBL] [Abstract][Full Text] [Related]
17. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and gamma-actin genes. Cheng C; Sharp PA Mol Cell Biol; 2003 Mar; 23(6):1961-7. PubMed ID: 12612070 [TBL] [Abstract][Full Text] [Related]