These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20107076)

  • 1. When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires.
    Diekhof EK; Gruber O
    J Neurosci; 2010 Jan; 30(4):1488-93. PubMed ID: 20107076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impulsive personality and the ability to resist immediate reward: an fMRI study examining interindividual differences in the neural mechanisms underlying self-control.
    Diekhof EK; Nerenberg L; Falkai P; Dechent P; Baudewig J; Gruber O
    Hum Brain Mapp; 2012 Dec; 33(12):2768-84. PubMed ID: 21938756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional neuroimaging study assessing gender differences in the neural mechanisms underlying the ability to resist impulsive desires.
    Diekhof EK; Keil M; Obst KU; Henseler I; Dechent P; Falkai P; Gruber O
    Brain Res; 2012 Sep; 1473():63-77. PubMed ID: 22814146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Amygdala Influences on the Fronto-Striatal Brain Mechanisms Involved in Self-Control of Impulsive Desires.
    Krämer B; Gruber O
    Neuropsychobiology; 2015; 72(1):37-45. PubMed ID: 26314945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior.
    Ballard IC; Murty VP; Carter RM; MacInnes JJ; Huettel SA; Adcock RA
    J Neurosci; 2011 Jul; 31(28):10340-6. PubMed ID: 21753011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural predictors of purchases.
    Knutson B; Rick S; Wimmer GE; Prelec D; Loewenstein G
    Neuron; 2007 Jan; 53(1):147-56. PubMed ID: 17196537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.
    Richter A; Petrovic A; Diekhof EK; Trost S; Wolter S; Gruber O
    J Psychiatr Res; 2015 Dec; 71():8-15. PubMed ID: 26522867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of reward anticipation and outcome with event-related fMRI.
    Knutson B; Fong GW; Adams CM; Varner JL; Hommer D
    Neuroreport; 2001 Dec; 12(17):3683-7. PubMed ID: 11726774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of frontostriatal interaction aligns with reduced primary reward processing under serotonergic drugs.
    Abler B; Grön G; Hartmann A; Metzger C; Walter M
    J Neurosci; 2012 Jan; 32(4):1329-35. PubMed ID: 22279217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different representation of forthcoming reward in nucleus accumbens and medial prefrontal cortex.
    Miyazaki K; Miyazaki KW; Matsumoto G
    Neuroreport; 2004 Mar; 15(4):721-6. PubMed ID: 15094484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From affective value to decision-making in the prefrontal cortex.
    Grabenhorst F; Rolls ET; Parris BA
    Eur J Neurosci; 2008 Nov; 28(9):1930-9. PubMed ID: 18973606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-Related Trajectories of Functional Coupling between the VTA and Nucleus Accumbens Depend on Motivational State.
    Murty VP; Shah H; Montez D; Foran W; Calabro F; Luna B
    J Neurosci; 2018 Aug; 38(34):7420-7427. PubMed ID: 30030394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticostriatal White Matter Integrity and Dopamine D1 Receptor Availability Predict Age Differences in Prefrontal Value Signaling during Reward Learning.
    de Boer L; Garzón B; Axelsson J; Riklund K; Nyberg L; Bäckman L; Guitart-Masip M
    Cereb Cortex; 2020 Sep; 30(10):5270-5280. PubMed ID: 32484215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociating pathomechanisms of depression with fMRI: bottom-up or top-down dysfunctions of the reward system.
    Goya-Maldonado R; Weber K; Trost S; Diekhof E; Keil M; Dechent P; Gruber O
    Eur Arch Psychiatry Clin Neurosci; 2015 Feb; 265(1):57-66. PubMed ID: 25327829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited collateralization of neurons in the rat prefrontal cortex that project to the nucleus accumbens.
    Pinto A; Sesack SR
    Neuroscience; 2000; 97(4):635-42. PubMed ID: 10842008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward.
    Tzschentke TM; Schmidt WJ
    Crit Rev Neurobiol; 2000; 14(2):131-42. PubMed ID: 11513242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-motivated learning: mesolimbic activation precedes memory formation.
    Adcock RA; Thangavel A; Whitfield-Gabrieli S; Knutson B; Gabrieli JD
    Neuron; 2006 May; 50(3):507-17. PubMed ID: 16675403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The reward system of the brain: the brain loves surprises].
    Bruhn C
    Dtsch Med Wochenschr; 2014 May; 139(18):928-9. PubMed ID: 24883438
    [No Abstract]   [Full Text] [Related]  

  • 19. Reward sensitivity in impulsivity.
    Martin LE; Potts GF
    Neuroreport; 2004 Jun; 15(9):1519-22. PubMed ID: 15194887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating consequences: brain systems that encode the causal effects of actions.
    Tanaka SC; Balleine BW; O'Doherty JP
    J Neurosci; 2008 Jun; 28(26):6750-5. PubMed ID: 18579749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.