BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20107255)

  • 1. Treatment of membrane concentrates: phosphate removal and reduction of scaling potential.
    Sperlich A; Warschke D; Wegmann C; Ernst M; Jekel M
    Water Sci Technol; 2010; 61(2):301-6. PubMed ID: 20107255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study.
    Bellona C; Drewes JE
    Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated wastewater reuse concept combining natural reclamation techniques, membrane filtration and metal oxide adsorption.
    Sperlich A; Zheng X; Ernst M; Jekel M
    Water Sci Technol; 2008; 57(6):909-14. PubMed ID: 18413952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis.
    Beier S; Köster S; Veltmann K; Schröder H; Pinnekamp J
    Water Sci Technol; 2010; 61(7):1691-8. PubMed ID: 20371926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of nanofiltration and reverse osmosis concentrates: comparison of precipitative softening, coagulation, and anion exchange.
    Comstock SE; Boyer TH; Graf KC
    Water Res; 2011 Oct; 45(16):4855-65. PubMed ID: 21774956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can treated municipal wastewater be reused after ozonation and nanofiltration? Results from a pilot study of pharmaceutical removal in Henriksdal WWTP, Sweden.
    Flyborg L; Björlenius B; Persson KM
    Water Sci Technol; 2010; 61(5):1113-20. PubMed ID: 20220232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of RO/NF membranes at the removal of veterinary antibiotics.
    Dolar D; Vuković A; Ašperger D; Košutić K
    Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling.
    Sanciolo P; Zou L; Gray S; Leslie G; Stevens D
    Chemosphere; 2008 May; 72(2):243-9. PubMed ID: 18328536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.
    Genz A; Kornmüller A; Jekel M
    Water Res; 2004 Sep; 38(16):3523-30. PubMed ID: 15325178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State of the art and review on the treatment technologies of water reverse osmosis concentrates.
    Pérez-González A; Urtiaga AM; Ibáñez R; Ortiz I
    Water Res; 2012 Feb; 46(2):267-83. PubMed ID: 22119366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of phosphonate antiscalant from reverse osmosis membrane concentrate onto granular ferric hydroxide.
    Boels L; Keesman KJ; Witkamp GJ
    Environ Sci Technol; 2012 Sep; 46(17):9638-45. PubMed ID: 22873428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient removal by NF and RO membranes in a decentralized sanitation system.
    van Voorthuizen EM; Zwijnenburg A; Wessling M
    Water Res; 2005 Sep; 39(15):3657-67. PubMed ID: 16054670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the effluent organic matter removal of direct NF and powdered activated carbon/NF as high quality pretreatment options for artificial groundwater recharge.
    Kazner C; Wintgens T; Melin T; Baghoth S; Sharma S; Amy G
    Water Sci Technol; 2008; 57(6):821-7. PubMed ID: 18413940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of SAR (sodium adsorption ratio) between RO and NF processes for the reclamation of secondary effluent.
    Chang IS; Lee EW; Oh S; Kim Y
    Water Sci Technol; 2005; 51(6-7):313-8. PubMed ID: 16003991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of As, Se and V removal technologies for the treatment of oil refinery wastewater.
    Gillenwater PS; Urgun-Demirtas M; Negri MC; Snyder SW
    Water Sci Technol; 2012; 65(1):112-8. PubMed ID: 22173414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.