BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 20107276)

  • 21. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.
    GilPavas E; Molina-Tirado K; Gómez-García MA
    Water Sci Technol; 2009; 60(10):2581-8. PubMed ID: 19923764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology.
    Körbahti BK; Tanyolaç A
    J Hazard Mater; 2008 Mar; 151(2-3):422-31. PubMed ID: 17656018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.
    Aravind P; Subramanyan V; Ferro S; Gopalakrishnan R
    Water Res; 2016 Apr; 93():230-241. PubMed ID: 26921849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment.
    Rajkumar D; Kim JG
    J Hazard Mater; 2006 Aug; 136(2):203-12. PubMed ID: 16455198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes.
    Tezcan Un U; Koparal AS; Bakir Oğütveren U
    J Hazard Mater; 2009 May; 164(2-3):580-6. PubMed ID: 18819748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a post-treatment study.
    Yetilmezsoy K; Ilhan F; Sapci-Zengin Z; Sakar S; Gonullu MT
    J Hazard Mater; 2009 Feb; 162(1):120-32. PubMed ID: 18554794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation.
    Arslan-Alaton I; Alaton I
    Ecotoxicol Environ Saf; 2007 Sep; 68(1):98-107. PubMed ID: 17178160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode.
    Piya-areetham P; Shenchunthichai K; Hunsom M
    Water Res; 2006 Aug; 40(15):2857-64. PubMed ID: 16843518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater.
    Ahmad AA; Hameed BH
    J Hazard Mater; 2010 Jan; 173(1-3):487-93. PubMed ID: 19765899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.
    Aouni A; Fersi C; Ben Sik Ali M; Dhahbi M
    J Hazard Mater; 2009 Sep; 168(2-3):868-74. PubMed ID: 19369000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode.
    Koparal AS; Yavuz Y; Gürel C; Oğütveren UB
    J Hazard Mater; 2007 Jun; 145(1-2):100-8. PubMed ID: 17140728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of pre-ozone oxidation on acute toxicity and inert soluble COD fractions of a textile finishing industry wastewater.
    Selçuk H; Eremektar G; Meriç S
    J Hazard Mater; 2006 Sep; 137(1):254-60. PubMed ID: 16533558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.
    el Khames Saad M; Moussaoui Y; Zaghbani A; Mosrati I; Elaloui E; Ben Salem R
    Water Sci Technol; 2012; 66(1):217-23. PubMed ID: 22678221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of organic carbon from wastepaper pulp effluent by lab-scale solar photo-Fenton process.
    Xu M; Wang Q; Hao Y
    J Hazard Mater; 2007 Sep; 148(1-2):103-9. PubMed ID: 17367923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined chemical and biological oxidation of penicillin formulation effluent.
    Alaton IA; Dogruel S; Baykal E; Gerone G
    J Environ Manage; 2004 Nov; 73(2):155-63. PubMed ID: 15380320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO(2) anode.
    Chatzisymeon E; Dimou A; Mantzavinos D; Katsaounis A
    J Hazard Mater; 2009 Aug; 167(1-3):268-74. PubMed ID: 19188019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of levafix orange textile dye solution by electrocoagulation.
    Kobya M; Demirbas E; Can OT; Bayramoglu M
    J Hazard Mater; 2006 May; 132(2-3):183-8. PubMed ID: 16297542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated photochemical and biological treatment of a commercial textile surfactant: process optimization, process kinetics and COD fractionation.
    Arslan-Alaton I; Cokgor EU; Koban B
    J Hazard Mater; 2007 Jul; 146(3):453-8. PubMed ID: 17532567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wet air oxidation of table olive processing wastewater: determination of key operating parameters by factorial design.
    Katsoni A; Frontistis Z; Xekoukoulotakis NP; Diamadopoulos E; Mantzavinos D
    Water Res; 2008 Aug; 42(14):3591-600. PubMed ID: 18649915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.