BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20107308)

  • 81. Glutamic acid decarboxylase messenger ribonucleic acid is regulated by estradiol and progesterone in the hippocampus.
    Weiland NG
    Endocrinology; 1992 Dec; 131(6):2697-702. PubMed ID: 1446611
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Localization of gamma-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina.
    Nishimura Y; Schwartz ML; Rakic P
    Brain Res; 1985 Dec; 359(1-2):351-5. PubMed ID: 3907753
    [TBL] [Abstract][Full Text] [Related]  

  • 83. GAD1 gene polymorphisms are associated with bipolar I disorder and with blood homovanillic acid levels but not with plasma GABA levels.
    Arrúe A; González-Torres MA; Basterreche N; Arnaiz A; Olivas O; Zamalloa MI; Erkoreka L; Catalán A; Zumárraga M
    Neurochem Int; 2019 Mar; 124():152-161. PubMed ID: 30625343
    [No Abstract]   [Full Text] [Related]  

  • 84. Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy.
    Esclapez M; Houser CR
    J Comp Neurol; 1999 Sep; 412(3):488-505. PubMed ID: 10441235
    [TBL] [Abstract][Full Text] [Related]  

  • 85. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon.
    Guidotti A; Auta J; Davis JM; Dong E; Grayson DR; Veldic M; Zhang X; Costa E
    Psychopharmacology (Berl); 2005 Jul; 180(2):191-205. PubMed ID: 15864560
    [TBL] [Abstract][Full Text] [Related]  

  • 86. BDNF Val66Met polymorphism and GAD67 mRNA expression in the prefrontal cortex of subjects with schizophrenia.
    Hashimoto T; Lewis DA
    Am J Psychiatry; 2006 Mar; 163(3):534-7. PubMed ID: 16513879
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The human reelin gene: transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia.
    Grayson DR; Chen Y; Costa E; Dong E; Guidotti A; Kundakovic M; Sharma RP
    Pharmacol Ther; 2006 Jul; 111(1):272-86. PubMed ID: 16574235
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Neurogenesis of GABAergic neurons in the rat dentate gyrus: a combined autoradiographic and immunocytochemical study.
    Lübbers K; Wolff JR; Frotscher M
    Neurosci Lett; 1985 Dec; 62(3):317-22. PubMed ID: 2419797
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study.
    Woodson W; Nitecka L; Ben-Ari Y
    J Comp Neurol; 1989 Feb; 280(2):254-71. PubMed ID: 2925894
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Recovery of decreased glutamate decarboxylase immunoreactivity after rat hippocampal kindling.
    Babb TL; Pretorius JK; Kupfer WR; Feldblum S
    Epilepsy Res; 1989; 3(1):18-30. PubMed ID: 2917545
    [TBL] [Abstract][Full Text] [Related]  

  • 91. GABAergic neurons that pioneer hippocampal area CA1 of the mouse: morphologic features and multiple fates.
    Jiang M; Oliva AA; Lam T; Swann JW
    J Comp Neurol; 2001 Oct; 439(2):176-92. PubMed ID: 11596047
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The structural and functional heterogeneity of glutamic acid decarboxylase: a review.
    Erlander MG; Tobin AJ
    Neurochem Res; 1991 Mar; 16(3):215-26. PubMed ID: 1780024
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Distribution of calretinin-immunoreactivity in the rat entorhinal cortex: coexistence with GABA.
    Miettinen M; Pitkänen A; Miettinen R
    J Comp Neurol; 1997 Feb; 378(3):363-78. PubMed ID: 9034897
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.
    Monnerie H; Hsu FC; Coulter DA; Le Roux PD
    Neuroscience; 2010 Dec; 171(4):1075-90. PubMed ID: 20923697
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Immunocytochemical localization of gamma-aminobutyric acid in the rat hippocampal formation.
    Anderson KJ; Maley BE; Scheff SW
    Neurosci Lett; 1986 Aug; 69(1):7-12. PubMed ID: 3528936
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain.
    Lipska BK; Lerman DN; Khaing ZZ; Weinberger DR
    Eur J Neurosci; 2003 Dec; 18(11):3097-104. PubMed ID: 14656305
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Molecular etiologies of schizophrenia: are we almost there yet?
    Goldman D
    Am J Psychiatry; 2011 Sep; 168(9):879-81. PubMed ID: 21890799
    [No Abstract]   [Full Text] [Related]  

  • 98.
    Agrawal R; Kalmady SV; Venkatasubramanian G
    Clin Psychopharmacol Neurosci; 2017 May; 15(2):115-125. PubMed ID: 28449558
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Rare damaging variants in DNA repair and cell cycle pathways are associated with hippocampal and cognitive dysfunction: a combined genetic imaging study in first-episode treatment-naive patients with schizophrenia.
    Yang Z; Li M; Hu X; Xiang B; Deng W; Wang Q; Wang Y; Zhao L; Ma X; Sham PC; Northoff G; Li T
    Transl Psychiatry; 2017 Feb; 7(2):e1028. PubMed ID: 28195569
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid-Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder.
    Ruzicka WB; Subburaju S; Benes FM
    JAMA Psychiatry; 2015 Jun; 72(6):541-51. PubMed ID: 25738424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.