These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20107693)

  • 1. [Methodology for selecting areas for biofortified crop intervention].
    Rojas FA; Pachón H; Hyman GG; Varela AL
    Rev Panam Salud Publica; 2009 Nov; 26(5):419-28. PubMed ID: 20107693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying candidate sites for crop biofortification in Latin America: case studies in Colombia, Nicaragua and Bolivia.
    Zapata-Caldas E; Hyman G; Pachón H; Monserrate FA; Varela LV
    Int J Health Geogr; 2009 May; 8():29. PubMed ID: 19454034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals.
    Mejia LA; Dary O; Boukerdenna H
    Ann N Y Acad Sci; 2017 Feb; 1390(1):47-58. PubMed ID: 27801985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.
    Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M
    Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation model of the impact of biofortification on the absorption of adequate amounts of zinc and iron among Mexican women and preschool children.
    Denova-Gutiérrez E; García-Guerra A; Flores-Aldana M; Rodríguez-Ramírez S; Hotz C
    Food Nutr Bull; 2008 Sep; 29(3):203-12. PubMed ID: 18947033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofortification: a new tool to reduce micronutrient malnutrition.
    Bouis HE; Hotz C; McClafferty B; Meenakshi JV; Pfeiffer WH
    Food Nutr Bull; 2011 Mar; 32(1 Suppl):S31-40. PubMed ID: 21717916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acceptance of zinc biofortified rice in Latin America: A consumer sensory study and grain quality characterization.
    Woods BJ; Gallego-Castillo S; Talsma EF; Álvarez D
    PLoS One; 2020; 15(11):e0242202. PubMed ID: 33175890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineral biofortification strategies for food staples: the example of common bean.
    Blair MW
    J Agric Food Chem; 2013 Sep; 61(35):8287-94. PubMed ID: 23848266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential to improve zinc status through biofortification of staple food crops with zinc.
    Hotz C
    Food Nutr Bull; 2009 Mar; 30(1 Suppl):S172-8. PubMed ID: 19472606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-biofortified staple food crops for improving iron status: a review of the current evidence.
    Finkelstein JL; Haas JD; Mehta S
    Curr Opin Biotechnol; 2017 Apr; 44():138-145. PubMed ID: 28131049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status.
    Petry N; Egli I; Gahutu JB; Tugirimana PL; Boy E; Hurrell R
    J Nutr; 2014 Nov; 144(11):1681-7. PubMed ID: 25332466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification.
    Petry N; Boy E; Wirth JP; Hurrell RF
    Nutrients; 2015 Feb; 7(2):1144-73. PubMed ID: 25679229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Combined Application of the Caco-2 Cell Bioassay Coupled with In Vivo (Gallus gallus) Feeding Trial Represents an Effective Approach to Predicting Fe Bioavailability in Humans.
    Tako E; Bar H; Glahn RP
    Nutrients; 2016 Nov; 8(11):. PubMed ID: 27869705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming Nigerian Food Systems Through Their Backbones: Lessons From a Decade of Staple Crop Biofortification Programing.
    Birol E; Foley J; Herrington C; Misra R; Mudyahoto B; Pfeiffer W; Diressie MT; Ilona P
    Food Nutr Bull; 2023 Sep; 44(1_suppl):S14-S26. PubMed ID: 36016479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of iron-biofortified bean adoption on bean productivity, consumption, purchases and sales.
    Vaiknoras K; Larochelle C
    World Dev; 2021 Mar; 139():105260. PubMed ID: 33658742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc Deficiency in Latin America and the Caribbean.
    Cediel G; Olivares M; Brito A; Cori H; López de Romaña D
    Food Nutr Bull; 2015 Jun; 36(2 Suppl):S129-38. PubMed ID: 26125198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops.
    La Frano MR; de Moura FF; Boy E; Lönnerdal B; Burri BJ
    Nutr Rev; 2014 May; 72(5):289-307. PubMed ID: 24689451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations.
    De Steur H; Mehta S; Gellynck X; Finkelstein JL
    Curr Opin Biotechnol; 2017 Apr; 44():181-188. PubMed ID: 28288329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofortification of Kidney Bean (
    Guerrero-Martin CA; Ortega-Ramírez AT; Silva-Marrufo Ó; Casallas-Martín BD; Cortés-Salazar N; Salinas-Silva R; Camacho-Galindo S; Da Silva Fernandes FA; Guerrero-Martin LE; Paulo de Freitas P; D V Duarte E
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.