These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20107832)

  • 1. Human endothelial dysfunction: EDCFs.
    Virdis A; Ghiadoni L; Taddei S
    Pflugers Arch; 2010 May; 459(6):1015-23. PubMed ID: 20107832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent contractions and endothelial dysfunction in human hypertension.
    Versari D; Daghini E; Virdis A; Ghiadoni L; Taddei S
    Br J Pharmacol; 2009 Jun; 157(4):527-36. PubMed ID: 19630832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial dysfunction: a strategic target in the treatment of hypertension?
    Tang EH; Vanhoutte PM
    Pflugers Arch; 2010 May; 459(6):995-1004. PubMed ID: 20127126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular effects of endothelin-1 in essential hypertension: relationship with cyclooxygenase-derived endothelium-dependent contracting factors and nitric oxide.
    Taddei S; Virdis A; Ghiadoni L; Salvetti A
    J Cardiovasc Pharmacol; 2000; 35(4 Suppl 2):S37-40. PubMed ID: 10976779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constrictor prostanoids and uridine adenosine tetraphosphate: vascular mediators and therapeutic targets in hypertension and diabetes.
    Matsumoto T; Goulopoulou S; Taguchi K; Tostes RC; Kobayashi T
    Br J Pharmacol; 2015 Aug; 172(16):3980-4001. PubMed ID: 26031319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclooxygenase-2-derived prostaglandin F2alpha mediates endothelium-dependent contractions in the aortae of hamsters with increased impact during aging.
    Wong SL; Leung FP; Lau CW; Au CL; Yung LM; Yao X; Chen ZY; Vanhoutte PM; Gollasch M; Huang Y
    Circ Res; 2009 Jan; 104(2):228-35. PubMed ID: 19096033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial Dysfunction in Resistance Arteries of Hypertensive Humans: Old and New Conspirators.
    Virdis A; Taddei S
    J Cardiovasc Pharmacol; 2016 Jun; 67(6):451-7. PubMed ID: 26808712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COX-mediated endothelium-dependent contractions: from the past to recent discoveries.
    Wong MS; Vanhoutte PM
    Acta Pharmacol Sin; 2010 Sep; 31(9):1095-102. PubMed ID: 20711228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasoconstrictor prostanoids.
    Félétou M; Huang Y; Vanhoutte PM
    Pflugers Arch; 2010 May; 459(6):941-50. PubMed ID: 20333529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythropoietin impairs endothelium-dependent vasorelaxation through cyclooxygenase-dependent mechanisms in humans.
    Wada Y; Matsuoka H; Tamai O; Kohno K; Okuda S; Imaizumi T
    Am J Hypertens; 1999 Oct; 12(10 Pt 1):980-7. PubMed ID: 10560784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 17beta-estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation.
    Ospina JA; Duckles SP; Krause DN
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H241-50. PubMed ID: 12637362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractile effect of endothelin in human placental veins: role of endothelium prostaglandins and thromboxane.
    Le SQ; Wasserstrum N; Mombouli JV; Vanhoutte PM
    Am J Obstet Gynecol; 1993 Oct; 169(4):919-24. PubMed ID: 8238149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension.
    Taddei S; Virdis A; Ghiadoni L; Magagna A; Salvetti A
    Circulation; 1998 Jun; 97(22):2222-9. PubMed ID: 9631871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial dysfunction in hypertension.
    Taddei S; Virdis A; Ghiadoni L; Sudano I; Salvetti A
    J Cardiovasc Pharmacol; 2001 Nov; 38 Suppl 2():S11-4. PubMed ID: 11811368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine-induced endothelium-dependent contractions in the SHR aorta: the Janus face of prostacyclin.
    Gluais P; Lonchampt M; Morrow JD; Vanhoutte PM; Feletou M
    Br J Pharmacol; 2005 Nov; 146(6):834-45. PubMed ID: 16158068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary endothelial dysfunction: hypertension and heart failure.
    Boulanger CM
    J Mol Cell Cardiol; 1999 Jan; 31(1):39-49. PubMed ID: 10072714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen-derived free radicals are key to the endothelial dysfunction of diabetes.
    Shi Y; Vanhoutte PM
    J Diabetes; 2009 Sep; 1(3):151-62. PubMed ID: 20923534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-dependent contractions in SHR: a tale of prostanoid TP and IP receptors.
    Félétou M; Verbeuren TJ; Vanhoutte PM
    Br J Pharmacol; 2009 Feb; 156(4):563-74. PubMed ID: 19154435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms underlying ATP-induced endothelium-dependent contractions in the SHR aorta.
    Gluais P; Vanhoutte PM; Félétou M
    Eur J Pharmacol; 2007 Feb; 556(1-3):107-14. PubMed ID: 17126320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-dependent contractions in hypertension.
    Vanhoutte PM; Feletou M; Taddei S
    Br J Pharmacol; 2005 Feb; 144(4):449-58. PubMed ID: 15655530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.