These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20107915)

  • 1. A technique based on laser Doppler flowmetry and photoplethysmography for simultaneously monitoring blood flow at different tissue depths.
    Hagblad J; Lindberg LG; Kaisdotter Andersson A; Bergstrand S; Lindgren M; Ek AC; Folke M; Lindén M
    Med Biol Eng Comput; 2010 May; 48(5):415-22. PubMed ID: 20107915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical issues related to the long-term monitoring of blood flow at different depths using LDF and PPG.
    Hagblad J; Folke M; Lindberg LG; Lindén M
    Physiol Meas; 2012 Jun; 33(6):985-96. PubMed ID: 22561159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-invasive measure of changes in blood flow in the human anterior tibial muscle.
    Zhang Q; Lindberg LG; Kadefors R; Styf J
    Eur J Appl Physiol; 2001 May; 84(5):448-52. PubMed ID: 11417434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow measurements at different depths using photoplethysmography and laser Doppler techniques.
    Bergstrand S; Lindberg LG; Ek AC; Lindén M; Lindgren M
    Skin Res Technol; 2009 May; 15(2):139-47. PubMed ID: 19622122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges.
    Abay TY; Kyriacou PA
    Physiol Meas; 2016 Apr; 37(4):503-14. PubMed ID: 26963349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.
    Sandberg M; Zhang Q; Styf J; Gerdle B; Lindberg LG
    Acta Physiol Scand; 2005 Apr; 183(4):335-43. PubMed ID: 15799770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of inspiratory-induced vasoconstrictive episodes: a comparison of laser Doppler fluxmetry and photoplethysmography.
    Rauh R; Posfay A; Mück-Weymann M
    Clin Physiol Funct Imaging; 2003 Nov; 23(6):344-8. PubMed ID: 14617265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the correlation between photoplethysmography and laser Doppler flowmetry microvascular low-frequency oscillations.
    Mizeva I; Di Maria C; Frick P; Podtaev S; Allen J
    J Biomed Opt; 2015 Mar; 20(3):037007. PubMed ID: 25764202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of photoplethysmography, laser doppler flowmetry and near infrared spectroscopy during induced thermal stress.
    Budidha K; Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6417-20. PubMed ID: 26737761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular blood flow and skin temperature changes in the fingers following a deep nspiratory gasp.
    Allen J; Frame JR; Murray A
    Physiol Meas; 2002 May; 23(2):365-73. PubMed ID: 12051308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different lasers reveal different skin microcirculatory flowmotion - data from the wavelet transform analysis of human hindlimb perfusion.
    Rodrigues LM; Rocha C; Ferreira H; Silva H
    Sci Rep; 2019 Nov; 9(1):16951. PubMed ID: 31740748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography.
    Spigulis J; Gailite L; Lihachev A; Erts R
    Appl Opt; 2007 Apr; 46(10):1754-9. PubMed ID: 17356618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
    Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J
    Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long term monitoring of blood flow at multiple depths - observations of changes.
    Hagblad J; Folke M; Lindén M
    Stud Health Technol Inform; 2012; 177():107-12. PubMed ID: 22942039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement depth and volume in laser Doppler flowmetry.
    Fredriksson I; Larsson M; Strömberg T
    Microvasc Res; 2009 Jun; 78(1):4-13. PubMed ID: 19285089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraoperative monitoring of intestinal viability: Evaluation of a new combined sensor.
    McGuinness-Abdollahi Z; Thaha MA; Ramsanahie A; Ahmed S; Kyriacou PA; Phillips JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5126-9. PubMed ID: 26737445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe.
    Abdollahi Z; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1728-31. PubMed ID: 24110040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfusion assessment in rat spinal cord tissue using photoplethysmography and laser Doppler flux measurements.
    Phillips JP; Cibert-Goton V; Langford RM; Shortland PJ
    J Biomed Opt; 2013 Mar; 18(3):037005. PubMed ID: 23478810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoplethysmography. Part 1. Comparison with laser Doppler flowmetry.
    Lindberg LG; Tamura T; Oberg PA
    Med Biol Eng Comput; 1991 Jan; 29(1):40-7. PubMed ID: 2016919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of laser Doppler, near-infrared spectroscopy and Doppler ultrasound for peripheral blood flow measurements during and after exercise in the heat.
    Choo HC; Nosaka K; Peiffer JJ; Ihsan M; Yeo CC; Abbiss CR
    J Sports Sci; 2017 Sep; 35(17):1715-1723. PubMed ID: 27649579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.