These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 20108686)
1. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution. Kim KR; Owens G J Environ Sci (China); 2009; 21(11):1532-40. PubMed ID: 20108686 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
3. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Tipping E; Rieuwerts J; Pan G; Ashmore MR; Lofts S; Hill MT; Farago ME; Thornton I Environ Pollut; 2003; 125(2):213-25. PubMed ID: 12810315 [TBL] [Abstract][Full Text] [Related]
4. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Nolan AL; Mclaughlin MJ; Mason SD Environ Sci Technol; 2003 Jan; 37(1):90-8. PubMed ID: 12542296 [TBL] [Abstract][Full Text] [Related]
5. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
6. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. Luo XS; Zhou DM; Liu XH; Wang YJ J Hazard Mater; 2006 Apr; 131(1-3):19-27. PubMed ID: 16260085 [TBL] [Abstract][Full Text] [Related]
7. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Jung MC; Thornton I Sci Total Environ; 1997 May; 198(2):105-21. PubMed ID: 9167264 [TBL] [Abstract][Full Text] [Related]
8. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. Nolan AL; Zhang H; McLaughlin MJ J Environ Qual; 2005; 34(2):496-507. PubMed ID: 15758102 [TBL] [Abstract][Full Text] [Related]
9. Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Impellitteri CA; Lu Y; Saxe JK; Allen HE; Peijnenburg WJ Environ Int; 2002 Nov; 28(5):401-10. PubMed ID: 12437290 [TBL] [Abstract][Full Text] [Related]
10. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
11. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation. del Carmen Hernández-Soriano M; Peña A; Mingorance MD J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854 [TBL] [Abstract][Full Text] [Related]
12. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
13. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104 [TBL] [Abstract][Full Text] [Related]
14. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Weng L; Temminghoff EJ; Lofts S; Tipping E; Van Riemsdijk WH Environ Sci Technol; 2002 Nov; 36(22):4804-10. PubMed ID: 12487303 [TBL] [Abstract][Full Text] [Related]
15. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK). Zia A; van den Berg L; Ahmad MN; Riaz M; Zia D; Ashmore M J Environ Manage; 2018 Sep; 222():260-267. PubMed ID: 29860119 [TBL] [Abstract][Full Text] [Related]
16. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Weng L; Temminghoff EJ; Van Riemsdijk WH Environ Sci Technol; 2001 Nov; 35(22):4436-43. PubMed ID: 11757598 [TBL] [Abstract][Full Text] [Related]
17. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192 [TBL] [Abstract][Full Text] [Related]
18. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse. Schröder TJ; Hiemstra T; Vink JP; van der Zee SE Environ Sci Technol; 2005 Sep; 39(18):7176-84. PubMed ID: 16201646 [TBL] [Abstract][Full Text] [Related]
19. Linking biosensor responses to Cd, Cu and Zn partitioning in soils. Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972 [TBL] [Abstract][Full Text] [Related]
20. The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils. Yin Y; Impellitteri CA; You SJ; Allen HE Sci Total Environ; 2002 Mar; 287(1-2):107-19. PubMed ID: 11883752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]