BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20108923)

  • 1. Visualizing the lower critical solution temperature phase transition of individual poly(nipam)-based hydrogel particles using near-infrared multispectral imaging microscopy.
    Mejac I; Park HH; Bryan WW; Lee TR; Tran CD
    Anal Chem; 2010 Mar; 82(5):1698-704. PubMed ID: 20108923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the effect of gold nanocages on absorption, imaging, and lower critical solution temperature phase transition of individual poly(NiPAM)-based hydrogel particles by near infrared multispectral imaging microscopy.
    Mejac I; Tran CD
    Anal Chem; 2011 May; 83(9):3520-7. PubMed ID: 21476588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.
    Mejac I; Bryan WW; Lee TR; Tran CD
    Anal Chem; 2009 Aug; 81(16):6687-94. PubMed ID: 19618908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel thermoresponsive hydrogel with ion-recognition property through supramolecular host-guest complexation.
    Ju XJ; Chu LY; Liu L; Mi P; Lee YM
    J Phys Chem B; 2008 Jan; 112(4):1112-8. PubMed ID: 18179200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of Temperature-Sensitivity of Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogel Microspheres upon Their Sizes.
    Makino K; Agata H; Ohshima H
    J Colloid Interface Sci; 2000 Oct; 230(1):128-134. PubMed ID: 10998296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactosylated poly(N-isopropylacrylamide) hydrogel submicrometer particles for specific cellular uptake within hepatocytes.
    Choi SH; Yoon JJ; Park TG
    J Colloid Interface Sci; 2002 Jul; 251(1):57-63. PubMed ID: 16290701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites.
    Kim JH; Lee TR
    Langmuir; 2007 Jun; 23(12):6504-9. PubMed ID: 17489608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.
    Xia LW; Ju XJ; Liu JJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Sep; 349(1):106-13. PubMed ID: 20609844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions.
    Ju XJ; Zhang SB; Zhou MY; Xie R; Yang L; Chu LY
    J Hazard Mater; 2009 Aug; 167(1-3):114-8. PubMed ID: 19179009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links.
    Kim S; Healy KE
    Biomacromolecules; 2003; 4(5):1214-23. PubMed ID: 12959586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Synthesis and fluorescence properties of thermo-responsive microgel nanoparticles].
    Zhao HF; Xiong WB; Huang XH; Chen MQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):172-5. PubMed ID: 19385232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles.
    Wiedemair J; Serpe MJ; Kim J; Masson JF; Lyon LA; Mizaikoff B; Kranz C
    Langmuir; 2007 Jan; 23(1):130-7. PubMed ID: 17190495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcalorimetric Investigation on the lower critical solution temperature behavior of N-isopropycrylamide-co-acrylic acid copolymer in aqueous solution.
    Weng Y; Ding Y; Zhang G
    J Phys Chem B; 2006 Jun; 110(24):11813-7. PubMed ID: 16800482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral interpretation of thermally irreversible recovery of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel.
    Sun S; Hu J; Tang H; Wu P
    Phys Chem Chem Phys; 2011 Mar; 13(11):5061-7. PubMed ID: 21290077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization behavior of soft, attractive microgels.
    Meng Z; Cho JK; Debord S; Breedveld V; Lyon LA
    J Phys Chem B; 2007 Jun; 111(25):6992-7. PubMed ID: 17536855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-angle neutron scattering study of temperature-induced emulsion gelation: the role of sticky microgel particles.
    Koh AY; Saunders BR
    Langmuir; 2005 Jul; 21(15):6734-41. PubMed ID: 16008382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of temperature-dependent pore size in poly(N-isopropylacrylamide) hydrogel beads.
    Park TG; Hoffman AS
    Biotechnol Prog; 1994; 10(1):82-6. PubMed ID: 7764530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-Exclusion "capture and release" separations using surface-patterned poly(N-isopropylacrylamide) hydrogels.
    Castellanos A; DuPont SJ; Heim AJ; Matthews G; Stroot PG; Moreno W; Toomey RG
    Langmuir; 2007 May; 23(11):6391-5. PubMed ID: 17441745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Swelling Properties of Poly(NIPAM) "Minigel" Particles Prepared by Inverse Suspension Polymerization.
    Dowding PJ; Vincent B; Williams E
    J Colloid Interface Sci; 2000 Jan; 221(2):268-272. PubMed ID: 10631030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.