These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 20108980)
1. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Gilbert SD; Stoddard CD; Wise SJ; Batey RT J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of the purine riboswitch aptamer domain. Gilbert SD; Love CE; Edwards AL; Batey RT Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911 [TBL] [Abstract][Full Text] [Related]
4. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930 [TBL] [Abstract][Full Text] [Related]
5. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Haller A; Altman RB; Soulière MF; Blanchard SC; Micura R Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4188-93. PubMed ID: 23440214 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Buck J; Noeske J; Wöhnert J; Schwalbe H Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045 [TBL] [Abstract][Full Text] [Related]
7. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531 [TBL] [Abstract][Full Text] [Related]
8. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain. Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773 [TBL] [Abstract][Full Text] [Related]
10. Sequence-dependent folding landscapes of adenine riboswitch aptamers. Lin JC; Hyeon C; Thirumalai D Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448 [TBL] [Abstract][Full Text] [Related]
11. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162 [TBL] [Abstract][Full Text] [Related]
13. Folding of the adenine riboswitch. Lemay JF; Penedo JC; Tremblay R; Lilley DM; Lafontaine DA Chem Biol; 2006 Aug; 13(8):857-68. PubMed ID: 16931335 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding. Li C; Zhao X; Xie P; Hu J; Bi H J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526 [TBL] [Abstract][Full Text] [Related]
16. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. Di Palma F; Colizzi F; Bussi G RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105 [TBL] [Abstract][Full Text] [Related]
17. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch. Hanke CA; Gohlke H PLoS One; 2017; 12(6):e0179271. PubMed ID: 28640851 [TBL] [Abstract][Full Text] [Related]
18. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734 [TBL] [Abstract][Full Text] [Related]
19. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648 [TBL] [Abstract][Full Text] [Related]
20. Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation. Blouin S; Chinnappan R; Lafontaine DA Nucleic Acids Res; 2011 Apr; 39(8):3373-87. PubMed ID: 21169337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]