BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 20109130)

  • 1. Detection of jaggery syrup in honey using near-infrared spectroscopy.
    Mishra S; Kamboj U; Kaur H; Kapur P
    Int J Food Sci Nutr; 2010 May; 61(3):306-15. PubMed ID: 20109130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of adulteration in honey using near-infrared spectroscopy].
    Chen LZ; Zhao J; Ye ZH; Zhong YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics.
    Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF
    Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy.
    Kuriakose S; Thankappan X; Joe H; Venkataraman V
    Analyst; 2010 Oct; 135(10):2676-81. PubMed ID: 20820490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics.
    Kelly JF; Downey G; Fouratier V
    J Agric Food Chem; 2004 Jan; 52(1):33-9. PubMed ID: 14709010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy.
    Li S; Zhang X; Shan Y; Su D; Ma Q; Wen R; Li J
    Food Chem; 2017 Mar; 218():231-236. PubMed ID: 27719903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of PLS and SMLR for nondestructive determination of sugar content in honey peach using NIRS].
    Xu HR; Wang HJ; Huang K; Ying YB; Yang C; Qian H; Hu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2523-6. PubMed ID: 19271481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion.
    Huang F; Song H; Guo L; Guang P; Yang X; Li L; Zhao H; Yang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118297. PubMed ID: 32248033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Possibilities of near-infrared spectroscopy for the assessment of principle components in honey].
    Tu ZH; Ji BP; Meng CY; Zhu DZ; Wang LG; Qing ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3291-4. PubMed ID: 20210153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Authentication of the botanical origin of honey by near-infrared spectroscopy.
    Ruoff K; Luginbühl W; Bogdanov S; Bosset JO; Estermann B; Ziolko T; Amado R
    J Agric Food Chem; 2006 Sep; 54(18):6867-72. PubMed ID: 16939351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Qualitative and quantitative detection of beet syrup adulteration of honey by near-infrared spectroscopy: a feasibility study].
    Li SF; Wen RZ; Yin Y; Zhou Z; Shan Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2637-41. PubMed ID: 24409707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis.
    Wang J; Kliks MM; Jun S; Jackson M; Li QX
    J Food Sci; 2010 Mar; 75(2):C208-14. PubMed ID: 20492227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of apple juice adulteration using near-infrared transflectance spectroscopy.
    León L; Kelly JD; Downey G
    Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial least squares regression calibration for determining wax content in processed flax fiber by near-infrared spectroscopy.
    Sohn M; Himmelsbach DS; Morrison WH; Akin DE; Barton FE
    Appl Spectrosc; 2006 Apr; 60(4):437-40. PubMed ID: 16613641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.
    Kamruzzaman M; Sun DW; ElMasry G; Allen P
    Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration.
    Başar B; Özdemir D
    J Sci Food Agric; 2018 Dec; 98(15):5616-5624. PubMed ID: 29696655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups.
    Kelly JD; Petisco C; Downey G
    J Agric Food Chem; 2006 Aug; 54(17):6166-71. PubMed ID: 16910703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of free amino acid content in Radix Pseudostellariae using near infrared (NIR) spectroscopy and different multivariate calibrations.
    Lin H; Chen Q; Zhao J; Zhou P
    J Pharm Biomed Anal; 2009 Dec; 50(5):803-8. PubMed ID: 19616914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis and detection of adulteration in crab meat using visible and near-infrared spectroscopy.
    Gayo J; Hale SA; Blanchard SM
    J Agric Food Chem; 2006 Feb; 54(4):1130-6. PubMed ID: 16478227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique.
    Tian HQ; Ying YB; Lu HS; Fu XP; Yu HY
    J Zhejiang Univ Sci B; 2007 Feb; 8(2):105-10. PubMed ID: 17266185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.