These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 20109130)
1. Detection of jaggery syrup in honey using near-infrared spectroscopy. Mishra S; Kamboj U; Kaur H; Kapur P Int J Food Sci Nutr; 2010 May; 61(3):306-15. PubMed ID: 20109130 [TBL] [Abstract][Full Text] [Related]
2. [Determination of adulteration in honey using near-infrared spectroscopy]. Chen LZ; Zhao J; Ye ZH; Zhong YP Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491 [TBL] [Abstract][Full Text] [Related]
3. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378 [TBL] [Abstract][Full Text] [Related]
4. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy. Kuriakose S; Thankappan X; Joe H; Venkataraman V Analyst; 2010 Oct; 135(10):2676-81. PubMed ID: 20820490 [TBL] [Abstract][Full Text] [Related]
5. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. Kelly JF; Downey G; Fouratier V J Agric Food Chem; 2004 Jan; 52(1):33-9. PubMed ID: 14709010 [TBL] [Abstract][Full Text] [Related]
6. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Li S; Zhang X; Shan Y; Su D; Ma Q; Wen R; Li J Food Chem; 2017 Mar; 218():231-236. PubMed ID: 27719903 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of PLS and SMLR for nondestructive determination of sugar content in honey peach using NIRS]. Xu HR; Wang HJ; Huang K; Ying YB; Yang C; Qian H; Hu J Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2523-6. PubMed ID: 19271481 [TBL] [Abstract][Full Text] [Related]
8. Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion. Huang F; Song H; Guo L; Guang P; Yang X; Li L; Zhao H; Yang M Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118297. PubMed ID: 32248033 [TBL] [Abstract][Full Text] [Related]
9. [Possibilities of near-infrared spectroscopy for the assessment of principle components in honey]. Tu ZH; Ji BP; Meng CY; Zhu DZ; Wang LG; Qing ZS Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3291-4. PubMed ID: 20210153 [TBL] [Abstract][Full Text] [Related]
10. Authentication of the botanical origin of honey by near-infrared spectroscopy. Ruoff K; Luginbühl W; Bogdanov S; Bosset JO; Estermann B; Ziolko T; Amado R J Agric Food Chem; 2006 Sep; 54(18):6867-72. PubMed ID: 16939351 [TBL] [Abstract][Full Text] [Related]
11. [Qualitative and quantitative detection of beet syrup adulteration of honey by near-infrared spectroscopy: a feasibility study]. Li SF; Wen RZ; Yin Y; Zhou Z; Shan Y Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2637-41. PubMed ID: 24409707 [TBL] [Abstract][Full Text] [Related]
12. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis. Wang J; Kliks MM; Jun S; Jackson M; Li QX J Food Sci; 2010 Mar; 75(2):C208-14. PubMed ID: 20492227 [TBL] [Abstract][Full Text] [Related]
13. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. León L; Kelly JD; Downey G Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804 [TBL] [Abstract][Full Text] [Related]
14. Partial least squares regression calibration for determining wax content in processed flax fiber by near-infrared spectroscopy. Sohn M; Himmelsbach DS; Morrison WH; Akin DE; Barton FE Appl Spectrosc; 2006 Apr; 60(4):437-40. PubMed ID: 16613641 [TBL] [Abstract][Full Text] [Related]
15. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Kamruzzaman M; Sun DW; ElMasry G; Allen P Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368 [TBL] [Abstract][Full Text] [Related]
16. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration. Başar B; Özdemir D J Sci Food Agric; 2018 Dec; 98(15):5616-5624. PubMed ID: 29696655 [TBL] [Abstract][Full Text] [Related]
17. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. Kelly JD; Petisco C; Downey G J Agric Food Chem; 2006 Aug; 54(17):6166-71. PubMed ID: 16910703 [TBL] [Abstract][Full Text] [Related]
18. Determination of free amino acid content in Radix Pseudostellariae using near infrared (NIR) spectroscopy and different multivariate calibrations. Lin H; Chen Q; Zhao J; Zhou P J Pharm Biomed Anal; 2009 Dec; 50(5):803-8. PubMed ID: 19616914 [TBL] [Abstract][Full Text] [Related]
19. Quantitative analysis and detection of adulteration in crab meat using visible and near-infrared spectroscopy. Gayo J; Hale SA; Blanchard SM J Agric Food Chem; 2006 Feb; 54(4):1130-6. PubMed ID: 16478227 [TBL] [Abstract][Full Text] [Related]
20. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique. Tian HQ; Ying YB; Lu HS; Fu XP; Yu HY J Zhejiang Univ Sci B; 2007 Feb; 8(2):105-10. PubMed ID: 17266185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]