BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20109487)

  • 1. Evolution of wakefulness, sleep and hibernation: from reptiles to mammals.
    Rial RV; Akaârir M; Gamundí A; Nicolau C; Garau C; Aparicio S; Tejada S; Gené L; González J; De Vera LM; Coenen AM; Barceló P; Esteban S
    Neurosci Biobehav Rev; 2010 Jul; 34(8):1144-60. PubMed ID: 20109487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The evolution of sleep: birds at the crossroads between mammals and reptiles].
    Garau C; Aparicio S; Rial RV; Esteban S
    Rev Neurol; 2005 Apr 1-15; 40(7):423-30. PubMed ID: 15849677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Primary sleep in vertebrates and its role in the genesis of hypobiosis in poikilotherms and hibernation in mammals].
    Karmanova IG
    Zh Evol Biokhim Fiziol; 1984; 20(1):49-53. PubMed ID: 6702352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the evolution of waking and sleeping.
    Rial R; Nicolau MC; Lopez-Garcia JA; Almirall H
    Comp Biochem Physiol Comp Physiol; 1993 Feb; 104(2):189-93. PubMed ID: 8095873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis.
    Rattenborg NC
    Brain Res Bull; 2006 Mar; 69(1):20-9. PubMed ID: 16464681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian NREM and REM sleep: Why, when and how.
    Rial RV; Akaârir M; Canellas F; Barceló P; Rubiño JA; Martín-Reina A; Gamundí A; Nicolau MC
    Neurosci Biobehav Rev; 2023 Mar; 146():105041. PubMed ID: 36646258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response to commentary on evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis.
    Rattenborg NC
    Brain Res Bull; 2007 May; 72(4-6):187-93. PubMed ID: 17452280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The disappearing slow wave activity of hibernators.
    Larkin JE; Heller CH
    Sleep Res Online; 1998; 1(2):96-101. PubMed ID: 11382864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional information flows between brain hemispheres across waking, non-REM and REM sleep states: an EEG study.
    Bertini M; Ferrara M; De Gennaro L; Curcio G; Moroni F; Babiloni C; Infarinato F; Rossini PM; Vecchio F
    Brain Res Bull; 2009 Mar; 78(6):270-5. PubMed ID: 19121373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.
    Schmidt MH
    Neurosci Biobehav Rev; 2014 Nov; 47():122-53. PubMed ID: 25117535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamics of changes in temperature of the brain and neck muscles in the wakefulness-sleep cycle in hibernating and nonhibernating mammals].
    Karmanova IG; Aristakesian EA; Piskareva TV
    Zh Evol Biokhim Fiziol; 1997; 33(4-5):484-91. PubMed ID: 9542046
    [No Abstract]   [Full Text] [Related]  

  • 12. Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep.
    Luppi PH
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():4-8. PubMed ID: 20509826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary approaches to understanding sleep.
    Lee Kavanau J
    Sleep Med Rev; 2005 Apr; 9(2):141-52. PubMed ID: 15737792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121.
    Olive MF; Seidel WF; Edgar DM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1073-83. PubMed ID: 9618410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep and circadian rhythms in mammalian torpor.
    Heller HC; Ruby NF
    Annu Rev Physiol; 2004; 66():275-89. PubMed ID: 14977404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locus coeruleus neuronal activity during the sleep-waking cycle in mice.
    Takahashi K; Kayama Y; Lin JS; Sakai K
    Neuroscience; 2010 Sep; 169(3):1115-26. PubMed ID: 20542093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleeping and waking state development in preterm infants.
    Holditch-Davis D; Scher M; Schwartz T; Hudson-Barr D
    Early Hum Dev; 2004 Oct; 80(1):43-64. PubMed ID: 15363838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep and sleep homeostasis in constant darkness in the rat.
    Deboer T
    J Sleep Res; 2009 Sep; 18(3):357-64. PubMed ID: 19552704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dreaming in the late morning: summation of REM and diurnal cortical activation.
    Antrobus J; Kondo T; Reinsel R; Fein G
    Conscious Cogn; 1995 Sep; 4(3):275-99. PubMed ID: 7497109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.