BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20110185)

  • 41. [Homologous amelogenin gene test of archaeological samples].
    Zhang HQ; Yang ZQ; Liu FE; Zhang J; Zhao WM
    Fa Yi Xue Za Zhi; 2006 Jun; 22(3):213-6. PubMed ID: 16856347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation Of A Powder-Free DNA Extraction Method For Skeletal Remains.
    Harrel M; Mayes C; Gangitano D; Hughes-Stamm S
    J Forensic Sci; 2018 Nov; 63(6):1819-1823. PubMed ID: 29411392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. STR-genotyping from human medieval tooth and bone samples.
    Ricaut FX; Keyser-Tracqui C; Crubézy E; Ludes B
    Forensic Sci Int; 2005 Jun; 151(1):31-5. PubMed ID: 15935940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies.
    Alonso A; Martín P; Albarrán C; García P; García O; de Simón LF; García-Hirschfeld J; Sancho M; de La Rúa C; Fernández-Piqueras J
    Forensic Sci Int; 2004 Jan; 139(2-3):141-9. PubMed ID: 15040907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Skeletal remains presumed submerged in water for three years identified using PCR-STR analysis.
    Crainic K; Paraire F; Leterreux M; Durigon M; de Mazancourt P
    J Forensic Sci; 2002 Sep; 47(5):1025-7. PubMed ID: 12353539
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The forensic evaluation of burned skeletal remains: a synthesis.
    Ubelaker DH
    Forensic Sci Int; 2009 Jan; 183(1-3):1-5. PubMed ID: 19010619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth.
    Kemp BM; Smith DG
    Forensic Sci Int; 2005 Nov; 154(1):53-61. PubMed ID: 16182949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA extraction from aged skeletal samples for STR typing by capillary electrophoresis.
    Huel R; Amory S; Bilić A; Vidović S; Jasaragić E; Parsons TJ
    Methods Mol Biol; 2012; 830():185-98. PubMed ID: 22139661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Difficulties of sex determination from forensic bone degraded DNA: A comparison of three methods.
    Quincey D; Carle G; Alunni V; Quatrehomme G
    Sci Justice; 2013 Sep; 53(3):253-60. PubMed ID: 23937932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Personal identification of an unknown individual based on determination of his DNA profile from exhumed remains].
    Kapińska E; Szczerkowska Z
    Arch Med Sadowej Kryminol; 2008; 58(1):32-6. PubMed ID: 18767500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA typing of bone specimens--the potential use of the profiler test as a tool for bone identification.
    Imaizumi K; Noguchi K; Shiraishi T; Sekiguchi K; Senju H; Fujii K; Yoshida K; Kasai K; Yoshino M
    Leg Med (Tokyo); 2005 Jan; 7(1):31-41. PubMed ID: 15556013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A rapid typing system at three STR loci from bloodstains using a simple DNA extraction kit and capillary electrophoresis.
    Yamamoto T; Kojima T; Nozawa H; Huang XL; Ohtaki H; Uchihi R; Tamaki K; Katsumata Y
    Nihon Hoigaku Zasshi; 1997 Oct; 51(5):396-400. PubMed ID: 9436368
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of different methods for DNA extraction from human burnt bones and the generation of genetic profiles for identification.
    Uzair A; Rasool N; Wasim M
    Med Sci Law; 2017 Oct; 57(4):159-166. PubMed ID: 28820349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [DNA genetyping of the trace bloodstains on the adsorbent object].
    Chen RH; Song Q; Xu QW; Dong Y
    Fa Yi Xue Za Zhi; 2007 Aug; 23(4):302-3. PubMed ID: 17896527
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Personal identification using DNA polymorphism--the identification of forensic biological materials].
    Shiono H
    Nihon Hoigaku Zasshi; 1996 Oct; 50(5):320-30. PubMed ID: 8952331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A modified mini-primer set for analyzing mitochondrial DNA control region sequences from highly degraded forensic samples.
    Lee HY; Kim NY; Park MJ; Yang WI; Shin KJ
    Biotechniques; 2008 Apr; 44(4):555-6, 558. PubMed ID: 18476821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of processing techniques on the forensic DNA analysis of human skeletal remains.
    Arismendi JL; Baker LE; Matteson KJ
    J Forensic Sci; 2004 Sep; 49(5):930-4. PubMed ID: 15461092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forensic mitochondrial DNA analysis of 116 casework skeletal samples.
    Nelson K; Melton T
    J Forensic Sci; 2007 May; 52(3):557-61. PubMed ID: 17456082
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A bone sample cleaning method using trypsin for the isolation of DNA.
    Li R; Liriano L
    Leg Med (Tokyo); 2011 Nov; 13(6):304-8. PubMed ID: 21944850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Implementation and validation of the Teleshake unit for DNA IQ robotic extraction and development of a large volume DNA IQ method.
    Grubb JC; Horsman-Hall KM; Sykes KL; Schlisserman RA; Covert VM; Rhee HN; Ban JD; Greenspoon SA
    J Forensic Sci; 2010 May; 55(3):706-14. PubMed ID: 20345792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.