BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20110364)

  • 1. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition.
    Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE
    J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.
    Hagemann TL; Boelens WC; Wawrousek EF; Messing A
    Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.
    Tian R; Gregor M; Wiche G; Goldman JE
    Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial effects of curcumin on GFAP filament organization and down-regulation of GFAP expression in an in vitro model of Alexander disease.
    Bachetti T; Di Zanni E; Balbi P; Ravazzolo R; Sechi G; Ceccherini I
    Exp Cell Res; 2012 Sep; 318(15):1844-54. PubMed ID: 22705585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease.
    Tang G; Xu Z; Goldman JE
    J Biol Chem; 2006 Dec; 281(50):38634-43. PubMed ID: 17038307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP.
    Hsiao VC; Tian R; Long H; Der Perng M; Brenner M; Quinlan RA; Goldman JE
    J Cell Sci; 2005 May; 118(Pt 9):2057-65. PubMed ID: 15840648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.
    Mignot C; Delarasse C; Escaich S; Della Gaspera B; NoƩ E; Colucci-Guyon E; Babinet C; Pekny M; Vicart P; Boespflug-Tanguy O; Dautigny A; Rodriguez D; Pham-Dinh D
    Exp Cell Res; 2007 Aug; 313(13):2766-79. PubMed ID: 17604020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild functional effects of a novel GFAP mutant allele identified in a familial case of adult-onset Alexander disease.
    Bachetti T; Caroli F; Bocca P; Prigione I; Balbi P; Biancheri R; Filocamo M; Mariotti C; Pareyson D; Ravazzolo R; Ceccherini I
    Eur J Hum Genet; 2008 Apr; 16(4):462-70. PubMed ID: 18197187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice.
    Cho W; Messing A
    Exp Cell Res; 2009 Apr; 315(7):1260-72. PubMed ID: 19146851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro treatments with ceftriaxone promote elimination of mutant glial fibrillary acidic protein and transcription down-regulation.
    Bachetti T; Di Zanni E; Balbi P; Bocca P; Prigione I; Deiana GA; Rezzani A; Ceccherini I; Sechi G
    Exp Cell Res; 2010 Aug; 316(13):2152-65. PubMed ID: 20471977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability.
    Chen YS; Lim SC; Chen MH; Quinlan RA; Perng MD
    Exp Cell Res; 2011 Oct; 317(16):2252-66. PubMed ID: 21756903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
    Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M
    APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.
    Moody LR; Barrett-Wilt GA; Sussman MR; Messing A
    J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP.
    Lin NH; Huang YS; Opal P; Goldman RD; Messing A; Perng MD
    Mol Biol Cell; 2016 Dec; 27(25):3980-3990. PubMed ID: 27798231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes.
    Tian R; Wu X; Hagemann TL; Sosunov AA; Messing A; McKhann GM; Goldman JE
    J Neuropathol Exp Neurol; 2010 Apr; 69(4):335-45. PubMed ID: 20448479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alexander Disease Modeling in Zebrafish: An In Vivo System Suitable to Perform Drug Screening.
    Candiani S; Carestiato S; Mack AF; Bani D; Bozzo M; Obino V; Ori M; Rosamilia F; De Sarlo M; Pestarino M; Ceccherini I; Bachetti T
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33322348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive autophagy in Alexander disease-affected astrocytes.
    Tang G; Yue Z; Talloczy Z; Goldman JE
    Autophagy; 2008 Jul; 4(5):701-3. PubMed ID: 18414043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes.
    Jones JR; Kong L; Hanna MG; Hoffman B; Krencik R; Bradley R; Hagemann T; Choi J; Doers M; Dubovis M; Sherafat MA; Bhattacharyya A; Kendziorski C; Audhya A; Messing A; Zhang SC
    Cell Rep; 2018 Oct; 25(4):947-958.e4. PubMed ID: 30355500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.