These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 20110677)
1. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing. Kloch M; Milewski M; Nurowska E; Dworakowska B; Cutting GR; Dołowy K Cell Physiol Biochem; 2010; 25(2-3):169-80. PubMed ID: 20110677 [TBL] [Abstract][Full Text] [Related]
2. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
3. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
4. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935 [TBL] [Abstract][Full Text] [Related]
5. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
6. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083 [TBL] [Abstract][Full Text] [Related]
7. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR; Travis SM; Welsh MJ J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246 [TBL] [Abstract][Full Text] [Related]
8. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
9. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W; Bernard K; Li G; Kirk KL J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710 [TBL] [Abstract][Full Text] [Related]
10. Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Csanády L; Vergani P; Gadsby DC Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1241-6. PubMed ID: 19966305 [TBL] [Abstract][Full Text] [Related]
11. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
12. Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating. Berger AL; Ikuma M; Hunt JF; Thomas PJ; Welsh MJ J Biol Chem; 2002 Jan; 277(3):2125-31. PubMed ID: 11788611 [TBL] [Abstract][Full Text] [Related]
13. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
14. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain. Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354 [TBL] [Abstract][Full Text] [Related]
16. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels. Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014 [TBL] [Abstract][Full Text] [Related]
18. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer. Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640 [TBL] [Abstract][Full Text] [Related]
19. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
20. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]