These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 201109)

  • 1. [Action mechanism of respiratory inhibition by systemic fungicides of the carboxin group. Action of oxathiin derevatives and analogs on nonphosphorylating submitochondrial particles from ox heart as well as Trametes versicolor and Trichoderma viride].
    Müller W; Schewe T; Lyr H; Zanke D
    Z Allg Mikrobiol; 1977; 17(5):359-72. PubMed ID: 201109
    [No Abstract]   [Full Text] [Related]  

  • 2. Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae.
    Ulrich JT; Mathre DE
    J Bacteriol; 1972 May; 110(2):628-32. PubMed ID: 4336692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mode of action of oxathiin derivatives on the physiology of sensitive and insensitive yeasts].
    Lyr H; Luthardt W; Ritter G
    Z Allg Mikrobiol; 1971; 11(5):373-85. PubMed ID: 5141626
    [No Abstract]   [Full Text] [Related]  

  • 4. A potent effect of 1,4-oxathiin systemic fungicides on succinate oxidation by a particulate preparation from Ustilago maydis.
    White GA
    Biochem Biophys Res Commun; 1971 Sep; 44(5):1212-9. PubMed ID: 5160406
    [No Abstract]   [Full Text] [Related]  

  • 5. [Mechanism of action of the systemic fungicide carboxine].
    Lyr H; Ritter G; Casperson G
    Z Allg Mikrobiol; 1972; 12(4):271-80. PubMed ID: 5071608
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic evidence for the action of oxathiin and thiazole derivatives on the succinic dehydrogenase system of Ustilago maydis mitochondria.
    Georgopoulos SG; Alexandri E; Chrysayi M
    J Bacteriol; 1972 Jun; 110(3):809-17. PubMed ID: 5030620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Action site of the systemic fungicide carboxin in the respiratory chain].
    Schewe T; Rapoport S; Böhme G; Kunz W
    Acta Biol Med Ger; 1973; 31(1):73-86. PubMed ID: 4774673
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of resistance to systemic fungicides with special reference to 1,4-oxathiin derivatives.
    Georgopoulos SG; White GA
    Environ Qual Saf Suppl; 1975; 3():414-5. PubMed ID: 1063660
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation of NADH oxidase by succinate in partially ubiquinone-depleted submitochondrial particles.
    Glazek E; Norling B; Nelson BD; Ernster L
    FEBS Lett; 1974 Sep; 46(1):123-6. PubMed ID: 4154079
    [No Abstract]   [Full Text] [Related]  

  • 10. [Relations between carboxin resistance and glycolytic ability in fungi].
    Ritter G; Kluge E; Lyr H
    Z Allg Mikrobiol; 1973; 13(3):243-50. PubMed ID: 4270758
    [No Abstract]   [Full Text] [Related]  

  • 11. Detoxication of carboxin.
    Lyr H; Ritter G; Banasiak L
    Z Allg Mikrobiol; 1974; 14(4):313-20. PubMed ID: 4211918
    [No Abstract]   [Full Text] [Related]  

  • 12. Possible mechanism of action of perhexiline maleate on heart mitochondria.
    Klüppel ML; Lopes LC; Silveira O; Campello AP
    Biochem Pharmacol; 1976 Nov; 25(21):2383-6. PubMed ID: 999725
    [No Abstract]   [Full Text] [Related]  

  • 13. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics.
    Chazotte B; Vanderkooi G
    Biochim Biophys Acta; 1981 Jul; 636(2):153-61. PubMed ID: 6269599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Action of respiratory inhibitors on mitochondrial respiratory enzymes in cauliflower (Brassica oleracea L.)].
    Schewe T; Hiebsch C; Parra MG; Rapoport S
    Acta Biol Med Ger; 1974; 32(5):419-26. PubMed ID: 4152638
    [No Abstract]   [Full Text] [Related]  

  • 15. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of mitochondrial electron transport systems by phosvel and some environmental conversion products.
    Winston GW; Pardini R
    Bull Environ Contam Toxicol; 1976 Jan; 15(1):19-23. PubMed ID: 58687
    [No Abstract]   [Full Text] [Related]  

  • 17. Topographical definition of new sites on the mitochondrial electron transport chain.
    Harmon HJ; Crane FL
    Biochem Biophys Res Commun; 1974 Jul; 59(1):326-33. PubMed ID: 4152203
    [No Abstract]   [Full Text] [Related]  

  • 18. Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles.
    Gutman M; Silman N
    FEBS Lett; 1972 Oct; 26(1):207-10. PubMed ID: 4404628
    [No Abstract]   [Full Text] [Related]  

  • 19. Characteristics of a succinate-di chlorophenolinophenol reductase reconstituted with bovine heart electron transport components.
    Cunningham CC; Spach PI
    Biochem Biophys Res Commun; 1975 Sep; 66(2):778-84. PubMed ID: 170931
    [No Abstract]   [Full Text] [Related]  

  • 20. Three genes determine the carboxin sensitivity of mitochondrial succinate oxidation in aspergillus nidulans.
    Gunatilleke IA; Arst HN; Scazzocchio C
    Genet Res; 1975 Dec; 26(3):297-305. PubMed ID: 178574
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.