These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20111742)

  • 1. Aquaporin-6 expression in the cochlear sensory epithelium is downregulated by salicylates.
    Perin P; Tritto S; Botta L; Fontana JM; Gastaldi G; Masetto S; Tosco M; Laforenza U
    J Biomed Biotechnol; 2010; 2010():264704. PubMed ID: 20111742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular retinol-binding protein type I is prominently and differentially expressed in the sensory epithelium of the rat cochlea and vestibular organs.
    Ylikoski J; Pirvola U; Eriksson U
    J Comp Neurol; 1994 Nov; 349(4):596-602. PubMed ID: 7860790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and immunolocalization of aquaporin-6 (Aqp6) in the rat inner ear.
    Taguchi D; Takeda T; Kakigi A; Okada T; Nishioka R; Kitano H
    Acta Otolaryngol; 2008 Aug; 128(8):832-40. PubMed ID: 18607959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental expression of Ca(v)1.3 (alpha1d) calcium channels in the mouse inner ear.
    Hafidi A; Dulon D
    Brain Res Dev Brain Res; 2004 Jun; 150(2):167-75. PubMed ID: 15158080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progressive deafness and altered cochlear innervation in knock-out mice lacking prosaposin.
    Akil O; Chang J; Hiel H; Kong JH; Yi E; Glowatzki E; Lustig LR
    J Neurosci; 2006 Dec; 26(50):13076-88. PubMed ID: 17167097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GATA3 is downregulated during hair cell differentiation in the mouse cochlea.
    Rivolta MN; Holley MC
    J Neurocytol; 1998 Sep; 27(9):637-47. PubMed ID: 10447238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice.
    Rio C; Dikkes P; Liberman MC; Corfas G
    J Comp Neurol; 2002 Jan; 442(2):156-62. PubMed ID: 11754168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways.
    Rudnicki A; Isakov O; Ushakov K; Shivatzki S; Weiss I; Friedman LM; Shomron N; Avraham KB
    BMC Genomics; 2014 Jun; 15(1):484. PubMed ID: 24942165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TAK1 expression in the cochlea: a specific marker for adult supporting cells.
    Parker MA; Jiang K; Kempfle JS; Mizutari K; Simmons CL; Bieber R; Adams J; Edge AS
    J Assoc Res Otolaryngol; 2011 Aug; 12(4):471-83. PubMed ID: 21472480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea.
    Smeti I; Watabe I; Savary E; Fontbonne A; Zine A
    PLoS One; 2014; 9(2):e88757. PubMed ID: 24551154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem/progenitor cells in the postnatal inner ear of the GFP-nestin transgenic mouse.
    Lopez IA; Zhao PM; Yamaguchi M; de Vellis J; Espinosa-Jeffrey A
    Int J Dev Neurosci; 2004 Jun; 22(4):205-13. PubMed ID: 15245756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of heregulin and ErbB/Her receptors in adult chinchilla cochlear and vestibular sensory epithelium.
    Zhang M; Ding D; Salvi R
    Hear Res; 2002 Jul; 169(1-2):56-68. PubMed ID: 12121740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental expression of alpha 9 acetylcholine receptor mRNA in the rat cochlea and vestibular inner ear.
    Luo L; Bennett T; Jung HH; Ryan AF
    J Comp Neurol; 1998 Apr; 393(3):320-31. PubMed ID: 9548553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals.
    Forge A; Becker D; Casalotti S; Edwards J; Marziano N; Nevill G
    J Comp Neurol; 2003 Dec; 467(2):207-31. PubMed ID: 14595769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted single-cell electroporation loading of Ca
    Berekméri E; Deák O; Téglás T; Sághy É; Horváth T; Aller M; Fekete Á; Köles L; Zelles T
    Hear Res; 2019 Jan; 371():75-86. PubMed ID: 30504093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery.
    Adler HJ; Belyantseva IA; Merritt RC; Frolenkov GI; Dougherty GW; Kachar B
    Hear Res; 2003 Oct; 184(1-2):27-40. PubMed ID: 14553901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti.
    Motallebzadeh H; Soons JAM; Puria S
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5762-5767. PubMed ID: 29760098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial supporting cells can differentiate into outer hair cells and Deiters' cells in the cultured organ of Corti.
    Malgrange B; Thiry M; Van De Water TR; Nguyen L; Moonen G; Lefebvre PP
    Cell Mol Life Sci; 2002 Oct; 59(10):1744-57. PubMed ID: 12475185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of transcriptomics, proteomics, and microRNA analyses reveals novel microRNA regulation of targets in the mammalian inner ear.
    Elkan-Miller T; Ulitsky I; Hertzano R; Rudnicki A; Dror AA; Lenz DR; Elkon R; Irmler M; Beckers J; Shamir R; Avraham KB
    PLoS One; 2011 Apr; 6(4):e18195. PubMed ID: 21483685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additional pharmacological evidence that endogenous ATP modulates cochlear mechanics.
    Chen C; Skellett RA; Fallon M; Bobbin RP
    Hear Res; 1998 Apr; 118(1-2):47-61. PubMed ID: 9606060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.