These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 20111974)

  • 1. Inflammation and cachexia in chronic kidney disease.
    Cheung WW; Paik KH; Mak RH
    Pediatr Nephrol; 2010 Apr; 25(4):711-24. PubMed ID: 20111974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cachexia in chronic kidney disease: role of inflammation and neuropeptide signaling.
    Mak RH; Cheung W
    Curr Opin Nephrol Hypertens; 2007 Jan; 16(1):27-31. PubMed ID: 17143068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy homeostasis and cachexia in chronic kidney disease.
    Mak RH; Cheung W
    Pediatr Nephrol; 2006 Dec; 21(12):1807-14. PubMed ID: 16897005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leptin and inflammation-associated cachexia in chronic kidney disease.
    Mak RH; Cheung W; Cone RD; Marks DL
    Kidney Int; 2006 Mar; 69(5):794-7. PubMed ID: 16518340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond nutrition: neuropeptide signaling and muscle mass maintenance in chronic kidney disease.
    Roberts TK; Bailey JL
    Kidney Int; 2008 Jul; 74(2):143-5. PubMed ID: 18591943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factor NRF2 as potential therapeutic target for preventing muscle wasting in aging chronic kidney disease patients.
    Gómez-García EF; Del Campo FM; Cortés-Sanabria L; Mendoza-Carrera F; Avesani CM; Stenvinkel P; Lindholm B; Cueto-Manzano AM
    J Nephrol; 2022 Dec; 35(9):2215-2225. PubMed ID: 36322291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orexigenic and anorexigenic mechanisms in the control of nutrition in chronic kidney disease.
    Mak RH; Cheung W; Cone RD; Marks DL
    Pediatr Nephrol; 2005 Mar; 20(3):427-31. PubMed ID: 15662537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of food intake and muscle wasting in cachexia.
    Amitani M; Asakawa A; Amitani H; Inui A
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2179-85. PubMed ID: 23911307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblast growth factor 21 in patients with cardiac cachexia: a possible role of chronic inflammation.
    Refsgaard Holm M; Christensen H; Rasmussen J; Johansen ML; Schou M; Faber J; Kistorp C
    ESC Heart Fail; 2019 Oct; 6(5):983-991. PubMed ID: 31429530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothalamic mechanisms in cachexia.
    Grossberg AJ; Scarlett JM; Marks DL
    Physiol Behav; 2010 Jul; 100(5):478-89. PubMed ID: 20346963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-6-like cytokines and cancer cachexia: consequences of chronic inflammation.
    Barton BE
    Immunol Res; 2001; 23(1):41-58. PubMed ID: 11417859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflammation and nutrition in renal insufficiency.
    Kalantar-Zadeh K; Stenvinkel P; Pillon L; Kopple JD
    Adv Ren Replace Ther; 2003 Jul; 10(3):155-69. PubMed ID: 14708070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease.
    Cheung WW; Mak RH
    Am J Physiol Renal Physiol; 2012 Nov; 303(9):F1315-24. PubMed ID: 22914778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of leptin and melanocortin signaling in uremia-associated cachexia.
    Cheung W; Yu PX; Little BM; Cone RD; Marks DL; Mak RH
    J Clin Invest; 2005 Jun; 115(6):1659-65. PubMed ID: 15931394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional status in chronic obstructive pulmonary disease: role of hypoxia.
    Raguso CA; Luthy C
    Nutrition; 2011 Feb; 27(2):138-43. PubMed ID: 21145207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of melanocortin signaling ameliorates uremic cachexia.
    Cheung WW; Rosengren S; Boyle DL; Mak RH
    Kidney Int; 2008 Jul; 74(2):180-6. PubMed ID: 18432186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ghrelin and cachexia in chronic kidney disease.
    Suzuki H; Asakawa A; Amitani H; Nakamura N; Inui A
    Pediatr Nephrol; 2013 Apr; 28(4):521-6. PubMed ID: 22760416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle wasting in cancer: the role of mitochondria.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):221-5. PubMed ID: 25769061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of disease: Cytokine and adipokine signaling in uremic cachexia.
    Mak RH; Cheung W; Cone RD; Marks DL
    Nat Clin Pract Nephrol; 2006 Sep; 2(9):527-34. PubMed ID: 16941045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.