These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 20112335)
21. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. RodrÃguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Dunens OM; MacKenzie KJ; Harris AT Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910 [TBL] [Abstract][Full Text] [Related]
23. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes. Huang R; Liu HY; Zhang BS; Sun XY; Liang CH; Su DS; Zong BN; Rong JF ChemSusChem; 2014 Dec; 7(12):3476-82. PubMed ID: 25213438 [TBL] [Abstract][Full Text] [Related]
24. Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes. Hu C; Hu S Langmuir; 2008 Aug; 24(16):8890-7. PubMed ID: 18630937 [TBL] [Abstract][Full Text] [Related]
25. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Wang B; Tian C; Wang L; Wang R; Fu H Nanotechnology; 2010 Jan; 21(2):025606. PubMed ID: 19955617 [TBL] [Abstract][Full Text] [Related]
26. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Ouyang Y; Chen L; Liu QX; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582 [TBL] [Abstract][Full Text] [Related]
27. Electronic structure and field emission of multiwalled carbon nanotubes depending on growth temperature. Yoon SW; Kim SY; Park J; Park CJ; Lee CJ J Phys Chem B; 2005 Nov; 109(43):20403-6. PubMed ID: 16853640 [TBL] [Abstract][Full Text] [Related]
28. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes. Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106 [TBL] [Abstract][Full Text] [Related]
29. Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. Ramesh P; Okazaki T; Taniguchi R; Kimura J; Sugai T; Sato K; Ozeki Y; Shinohara H J Phys Chem B; 2005 Jan; 109(3):1141-7. PubMed ID: 16851073 [TBL] [Abstract][Full Text] [Related]
30. Room temperature purification of few-walled carbon nanotubes with high yield. Feng Y; Zhang H; Hou Y; McNicholas TP; Yuan D; Yang S; Ding L; Feng W; Liu J ACS Nano; 2008 Aug; 2(8):1634-8. PubMed ID: 19206366 [TBL] [Abstract][Full Text] [Related]
31. Influence of functionalization of multi-walled carbon nanotubes on the properties of ethylene vinyl acetate nanocomposites. George JJ; Sengupta R; Bhowmick AK J Nanosci Nanotechnol; 2008 Apr; 8(4):1913-21. PubMed ID: 18572593 [TBL] [Abstract][Full Text] [Related]
32. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study. Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702 [TBL] [Abstract][Full Text] [Related]
33. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Crevillen AG; Pumera M; Gonzalez MC; Escarpa A Analyst; 2009 Apr; 134(4):657-62. PubMed ID: 19305913 [TBL] [Abstract][Full Text] [Related]
34. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Ambrosi A; Pumera M Phys Chem Chem Phys; 2010 Aug; 12(31):8943-7. PubMed ID: 20532301 [TBL] [Abstract][Full Text] [Related]
35. Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Liu Y; Huang L; Dong S Biosens Bioelectron; 2007 Aug; 23(1):35-41. PubMed ID: 17459687 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. Quan C; Li A; Gao N J Hazard Mater; 2010 Jul; 179(1-3):911-7. PubMed ID: 20400225 [TBL] [Abstract][Full Text] [Related]
37. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol. Geng L; Wu S; Zou Y; Jia M; Zhang W; Yan W; Liu G J Colloid Interface Sci; 2014 May; 421():71-7. PubMed ID: 24594034 [TBL] [Abstract][Full Text] [Related]
38. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Karnicka K; Miecznikowski K; Kowalewska B; Skunik M; Opallo M; Rogalski J; Schuhmann W; Kulesza PJ Anal Chem; 2008 Oct; 80(19):7643-8. PubMed ID: 18729478 [TBL] [Abstract][Full Text] [Related]
39. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane. Yang X; Yu H; Peng F; Wang H ChemSusChem; 2012 Jul; 5(7):1213-7. PubMed ID: 22488987 [TBL] [Abstract][Full Text] [Related]
40. Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation. Wang J; Peng X; Luan Z; Zhao C J Hazard Mater; 2010 Jun; 178(1-3):1125-7. PubMed ID: 20153112 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]