These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 20112535)

  • 21. Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO.
    Llorens E; Saaltink MW; Poch M; García J
    Bioresour Technol; 2011 Jan; 102(2):928-36. PubMed ID: 20926290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Removal efficiency of C and N in micro-polluted river through a subsurface-horizontal flow constructed wetlands].
    Yang XP; Zhou LX; Dai YY; Cui CH
    Huan Jing Ke Xue; 2008 Aug; 29(8):2177-82. PubMed ID: 18839569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Relationship between the nitrogen removal and oxygen demand in constructed wetlands].
    He LS; Liu HL; Xi BD; Zhu YB; Wei ZM; Huo SL
    Huan Jing Ke Xue; 2006 Jun; 27(6):1083-7. PubMed ID: 16921939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh.
    Saeed T; Afrin R; Muyeed AA; Sun G
    Chemosphere; 2012 Aug; 88(9):1065-73. PubMed ID: 22673399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating pretreatment and denitrification in constructed wetland systems.
    Gonzalo OG; Ruiz I; Soto M
    Sci Total Environ; 2017 Apr; 584-585():1300-1309. PubMed ID: 28189310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen removal in a small constructed wetland: an isotope mass balance approach.
    Reinhardt M; Müller B; Gächter R; Wehrli B
    Environ Sci Technol; 2006 May; 40(10):3313-9. PubMed ID: 16749699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System.
    De La Mora-Orozco C; González-Acuña IJ; Saucedo-Terán RA; Flores-López HE; Rubio-Arias HO; Ochoa-Rivero JM
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of organic matter, nitrogen and faecal indicators from diluted anaerobically digested slurry using tidal flow constructed wetlands.
    Guo L; Lv T; He K; Wu S; Dong X; Dong R
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5486-5496. PubMed ID: 28028703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen demand, nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions.
    Lim PE; Wong TF; Lim DV
    Environ Int; 2001 May; 26(5-6):425-31. PubMed ID: 11392762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review.
    Ilyas H; Masih I
    J Environ Manage; 2017 Aug; 198(Pt 1):372-383. PubMed ID: 28494426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments.
    Saeed T; Sun G
    Bioresour Technol; 2011 Jan; 102(2):967-74. PubMed ID: 20934326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of sponge iron dosing in baffled subsurface-flow constructed wetlands for treatment of wastewater treatment plant effluents during autumn and winter.
    Feng M; Liang J; Wang P; Wang Y; Li J
    Int J Phytoremediation; 2022; 24(13):1405-1417. PubMed ID: 35570740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pollutant removal performance of an integrated upflow-constructed wetland filled with haydites made of Al-based drinking water treatment residuals.
    Wang W; Han Y; Liu H; Zhang K; Yue Q; Bo L; Wang X
    Environ Technol; 2017 May; 38(9):1111-1119. PubMed ID: 27541991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system.
    Sun G; Zhao Y; Allen S
    J Biotechnol; 2005 Jan; 115(2):189-97. PubMed ID: 15607237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructed wetland for water quality improvement: a case study from Taiwan.
    Wu CY; Liu JK; Cheng SH; Surampalli DE; Chen CW; Kao CM
    Water Sci Technol; 2010; 62(10):2408-18. PubMed ID: 21076228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands.
    Fan J; Zhang B; Zhang J; Ngo HH; Guo W; Liu F; Guo Y; Wu H
    Bioresour Technol; 2013 Aug; 141():117-22. PubMed ID: 23561957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the nitrification-denitrification capacity of pilot-scale partially saturated vertical flow wetlands (with corncob in the free-drainage zone) after two years of operation.
    Del Toro Farías A; Zurita Martínez F
    Int J Phytoremediation; 2021; 23(8):829-836. PubMed ID: 33349025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems.
    Schmidt M; Wolfram D; Birkigt J; Ahlheim J; Paschke H; Richnow HH; Nijenhuis I
    Sci Total Environ; 2014 Feb; 472():185-93. PubMed ID: 24291561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.