These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. Leigh JA; Albers SV; Atomi H; Allers T FEMS Microbiol Rev; 2011 Jul; 35(4):577-608. PubMed ID: 21265868 [TBL] [Abstract][Full Text] [Related]
7. Temperature-dependent modulation of farnesyl diphosphate/geranylgeranyl diphosphate synthase from hyperthermophilic archaea. Fujiwara S; Yamanaka A; Hirooka K; Kobayashi A; Imanaka T; Fukusaki E Biochem Biophys Res Commun; 2004 Dec; 325(3):1066-74. PubMed ID: 15541397 [TBL] [Abstract][Full Text] [Related]
8. RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Portnoy V; Schuster G Nucleic Acids Res; 2006; 34(20):5923-31. PubMed ID: 17065466 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in genetic analyses of hyperthermophilic archaea and bacteria. Noll KM; Vargas M Arch Microbiol; 1997 Aug; 168(2):73-80. PubMed ID: 9238098 [TBL] [Abstract][Full Text] [Related]
10. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. Magidovich H; Eichler J FEMS Microbiol Lett; 2009 Nov; 300(1):122-30. PubMed ID: 19765088 [TBL] [Abstract][Full Text] [Related]
11. Transcription and translation are coupled in Archaea. French SL; Santangelo TJ; Beyer AL; Reeve JN Mol Biol Evol; 2007 Apr; 24(4):893-5. PubMed ID: 17237472 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary insights from studies on viruses of hyperthermophilic archaea. Prangishvili D Res Microbiol; 2003 May; 154(4):289-94. PubMed ID: 12798234 [TBL] [Abstract][Full Text] [Related]
13. Archaeal promoter architecture and mechanism of gene activation. Peng N; Ao X; Liang YX; She Q Biochem Soc Trans; 2011 Jan; 39(1):99-103. PubMed ID: 21265754 [TBL] [Abstract][Full Text] [Related]
14. [Development of the genetic transformation system in extremely halophilic archaea]. Zhou MX; Xiang H; Tan HR Sheng Wu Gong Cheng Xue Bao; 2002 May; 18(3):267-71. PubMed ID: 12192854 [TBL] [Abstract][Full Text] [Related]
15. Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Wagner M; Berkner S; Ajon M; Driessen AJ; Lipps G; Albers SV Biochem Soc Trans; 2009 Feb; 37(Pt 1):97-101. PubMed ID: 19143610 [TBL] [Abstract][Full Text] [Related]
16. Evolution of small guide RNA genes in hyperthermophilic archaea. Randau L Ann N Y Acad Sci; 2015 Apr; 1341():188-93. PubMed ID: 25585508 [TBL] [Abstract][Full Text] [Related]
17. Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus. She Q; Zhang C; Deng L; Peng N; Chen Z; Liang YX Biochem Soc Trans; 2009 Feb; 37(Pt 1):92-6. PubMed ID: 19143609 [TBL] [Abstract][Full Text] [Related]
18. [Heat shock proteins of the hyperthermophilic archaea]. Chen H; Zhang C; Ma X; Zhang Y Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2011-21. PubMed ID: 19306569 [TBL] [Abstract][Full Text] [Related]
19. The information transfer system of halophilic archaea. Capes MD; Coker JA; Gessler R; Grinblat-Huse V; DasSarma SL; Jacob CG; Kim JM; DasSarma P; DasSarma S Plasmid; 2011 Mar; 65(2):77-101. PubMed ID: 21094181 [TBL] [Abstract][Full Text] [Related]
20. [Cloning, expression and radiation inducibility of RadA from the hyperthermophilic archaeon Sulfolobus tokodaii]. Sheng D; Zhu S; Li M; Jiao J; Ni J; Shen Y Wei Sheng Wu Xue Bao; 2008 Mar; 48(3):317-22. PubMed ID: 18479057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]