These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 20112678)
1. [Effect of ultra high pressure treatment on Vibrio parahaemolyticus]. Hang Y; Lu H; Li J Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1489-93. PubMed ID: 20112678 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Ye M; Huang Y; Chen H Food Microbiol; 2012 Oct; 32(1):179-84. PubMed ID: 22850390 [TBL] [Abstract][Full Text] [Related]
3. Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. Kural AG; Shearer AE; Kingsley DH; Chen H Int J Food Microbiol; 2008 Sep; 127(1-2):1-5. PubMed ID: 18547664 [TBL] [Abstract][Full Text] [Related]
4. [Effects of ultra-high pressure on membrane components in Vibrio parahaemolyticus]. Tong Y; Lu H; Li J Wei Sheng Wu Xue Bao; 2012 Oct; 52(10):1244-50. PubMed ID: 23289323 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat. Mootian GK; Flimlin GE; Karwe MV; Schaffner DW J Food Sci; 2013 Feb; 78(2):E251-7. PubMed ID: 23324022 [TBL] [Abstract][Full Text] [Related]
6. [Synergistic inactivation of Bacillus subtilis by high hydrostatic pressure and Nisin at neutral pH]. Qi W; Qian P; Yu J; Zhang X; Zhang C; Lu R Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):35-42. PubMed ID: 21465787 [TBL] [Abstract][Full Text] [Related]
7. Proteomic identification of responsive proteins of Vibrio parahaemolyticus under high hydrostatic pressure. Fu LL; Wang R; Wang Y; Lin J J Sci Food Agric; 2014 Oct; 94(13):2630-8. PubMed ID: 24473993 [TBL] [Abstract][Full Text] [Related]
8. [Effect of ultra high pressure on cell membrane destruction and death of Listeria monocytogenes]. Lu H; Huang X; Zhu J Wei Sheng Wu Xue Bao; 2014 Jul; 54(7):746-53. PubMed ID: 25252455 [TBL] [Abstract][Full Text] [Related]
9. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Garcia-Gonzalez L; Geeraerd AH; Mast J; Briers Y; Elst K; Van Ginneken L; Van Impe JF; Devlieghere F Food Microbiol; 2010 Jun; 27(4):541-9. PubMed ID: 20417405 [TBL] [Abstract][Full Text] [Related]
10. The relationship between membrane damage, release of protein and loss of viability in Escherichia coli exposed to high hydrostatic pressure. Klotz B; Mañas P; Mackey BM Int J Food Microbiol; 2010 Feb; 137(2-3):214-20. PubMed ID: 20042249 [TBL] [Abstract][Full Text] [Related]
11. Conditions for a 5-log reduction of Vibrio vulnificus in oysters through high hydrostatic pressure treatment. Kural AG; Chen H Int J Food Microbiol; 2008 Feb; 122(1-2):180-7. PubMed ID: 18177963 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Quan Y; Choi KD; Chung D; Shin IS Int J Food Microbiol; 2010 Jan; 136(3):255-60. PubMed ID: 20004034 [TBL] [Abstract][Full Text] [Related]
13. Response of Vibrio parahaemolyticus to ethanol shock. Chiang ML; Ho WL; Chou CC Food Microbiol; 2006 Aug; 23(5):461-7. PubMed ID: 16943038 [TBL] [Abstract][Full Text] [Related]
14. Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Bermúdez-Aguirre D; Guerrero-Beltrán JÁ; Barbosa-Cánovas GV; Welti-Chanes J Food Sci Technol Int; 2011 Dec; 17(6):541-7. PubMed ID: 22049160 [TBL] [Abstract][Full Text] [Related]
15. Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization. Griffitt KJ; Noriea NF; Johnson CN; Grimes DJ J Microbiol Methods; 2011 May; 85(2):114-8. PubMed ID: 21329738 [TBL] [Abstract][Full Text] [Related]
16. Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment. Xu F; Feng X; Sui X; Lin H; Han Y Food Res Int; 2017 Oct; 100(Pt 2):282-288. PubMed ID: 28888452 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue. Deng X; Tang S; Wu Q; Tian J; Riley WW; Chen Z J Sci Food Agric; 2016 Mar; 96(5):1601-8. PubMed ID: 25989459 [TBL] [Abstract][Full Text] [Related]
18. A fuzzy logic-based model for the multistage high-pressure inactivation of Lactococcus lactis ssp. cremoris MG 1363. Kilimann KV; Hartmann C; Delgado A; Vogel RF; Gänzle MG Int J Food Microbiol; 2005 Jan; 98(1):89-105. PubMed ID: 15617804 [TBL] [Abstract][Full Text] [Related]
19. High gas pressure effects on yeast. Espinasse V; Perrier-Cornet JM; Marecat A; Gervais P Biotechnol Bioeng; 2008 Nov; 101(4):729-38. PubMed ID: 18814287 [TBL] [Abstract][Full Text] [Related]
20. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Chen H Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]