These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases. Yin DT; Kazlauskas RJ Chemistry; 2012 Jun; 18(26):8130-9. PubMed ID: 22618813 [TBL] [Abstract][Full Text] [Related]
4. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel. Yan X; Wang J; Sun Y; Zhu J; Wu S Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682 [TBL] [Abstract][Full Text] [Related]
5. Structure of an aryl esterase from Pseudomonas fluorescens. Cheeseman JD; Tocilj A; Park S; Schrag JD; Kazlauskas RJ Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1237-43. PubMed ID: 15213385 [TBL] [Abstract][Full Text] [Related]
6. Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Turner JM; Larsen NA; Basran A; Barbas CF; Bruce NC; Wilson IA; Lerner RA Biochemistry; 2002 Oct; 41(41):12297-307. PubMed ID: 12369817 [TBL] [Abstract][Full Text] [Related]
7. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01. Jun SY; Fushinobu S; Nojiri H; Omori T; Shoun H; Wakagi T Biochim Biophys Acta; 2006 Jul; 1764(7):1159-66. PubMed ID: 16844437 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866 [TBL] [Abstract][Full Text] [Related]
9. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. Schliessmann A; Hidalgo A; Berenguer J; Bornscheuer UT Chembiochem; 2009 Dec; 10(18):2920-3. PubMed ID: 19847842 [TBL] [Abstract][Full Text] [Related]
10. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157 [TBL] [Abstract][Full Text] [Related]
11. A reverse catalytic triad Asp containing loop shaping a wide substrate binding pocket of a feruloyl esterase from Lactobacillus plantarum. Zhang H; Wen B; Liu Y; Du G; Wei X; Imam KMSU; Zhou H; Fan S; Wang F; Wang Y; Xin F Int J Biol Macromol; 2021 Aug; 184():92-100. PubMed ID: 34116094 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Suzuki K; Hori A; Kawamoto K; Thangudu RR; Ishida T; Igarashi K; Samejima M; Yamada C; Arakawa T; Wakagi T; Koseki T; Fushinobu S Proteins; 2014 Oct; 82(10):2857-67. PubMed ID: 25066066 [TBL] [Abstract][Full Text] [Related]
13. Screening, nucleotide sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Khalameyzer V; Fischer I; Bornscheuer UT; Altenbuchner J Appl Environ Microbiol; 1999 Feb; 65(2):477-82. PubMed ID: 9925571 [TBL] [Abstract][Full Text] [Related]
14. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. Manco G; Mandrich L; Rossi M J Biol Chem; 2001 Oct; 276(40):37482-90. PubMed ID: 11447219 [TBL] [Abstract][Full Text] [Related]
15. Different active-site loop orientation in serine hydrolases versus acyltransferases. Jiang Y; Morley KL; Schrag JD; Kazlauskas RJ Chembiochem; 2011 Mar; 12(5):768-76. PubMed ID: 21351219 [TBL] [Abstract][Full Text] [Related]
16. Unveiling the crystal structure of thermostable dienelactone hydrolase exhibiting activity on terephthalate esters. Almeida DV; Ciancaglini I; Sandano ALH; Roman EKB; Andrade VB; Nunes AB; Tramontina R; da Silva VM; Gabel F; Corrêa TLR; Damasio A; Muniz JRC; Squina FM; Garcia W Enzyme Microb Technol; 2024 Oct; 180():110498. PubMed ID: 39182429 [TBL] [Abstract][Full Text] [Related]
17. Enhancing H Zhou P; Lan D; Popowicz GM; Wang X; Yang B; Wang Y Appl Microbiol Biotechnol; 2017 Jul; 101(14):5689-5697. PubMed ID: 28516207 [TBL] [Abstract][Full Text] [Related]
19. Substrate-induced conformational change and isomerase activity of dienelactone hydrolase and its site-specific mutants. Walker I; Hennessy JE; Ollis DL; Easton CJ Chembiochem; 2012 Jul; 13(11):1645-51. PubMed ID: 22761053 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the role of a second conserved serine in carboxylesterases via site-directed mutagenesis. Stok JE; Goloshchapov A; Song C; Wheelock CE; Derbel MB; Morisseau C; Hammock BD Arch Biochem Biophys; 2004 Oct; 430(2):247-55. PubMed ID: 15369824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]