These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 20113005)

  • 1. Value of using multiple proteases for large-scale mass spectrometry-based proteomics.
    Swaney DL; Wenger CD; Coon JJ
    J Proteome Res; 2010 Mar; 9(3):1323-9. PubMed ID: 20113005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Negative Mode Proteome with Activated Ion Negative Electron Transfer Dissociation (AI-NETD).
    Riley NM; Rush MJ; Rose CM; Richards AL; Kwiecien NW; Bailey DJ; Hebert AS; Westphall MS; Coon JJ
    Mol Cell Proteomics; 2015 Oct; 14(10):2644-60. PubMed ID: 26193884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addressing trypsin bias in large scale (phospho)proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides.
    Tran BQ; Hernandez C; Waridel P; Potts A; Barblan J; Lisacek F; Quadroni M
    J Proteome Res; 2011 Feb; 10(2):800-11. PubMed ID: 21166477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation.
    Chiva C; Ortega M; Sabidó E
    J Proteome Res; 2014 Sep; 13(9):3979-86. PubMed ID: 24986539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Protease on Ultraviolet Photodissociation Mass Spectrometry for Bottom-up Proteomics.
    Greer SM; Parker WR; Brodbelt JS
    J Proteome Res; 2015 Jun; 14(6):2626-32. PubMed ID: 25950415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification.
    Schräder CU; Moore S; Goodarzi AA; Schriemer DC
    Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding proteome coverage with orthogonal-specificity α-lytic proteases.
    Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA
    Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Choong WK; Chen CT; Wang JH; Sung TY
    J Proteome Res; 2019 Dec; 18(12):4124-4132. PubMed ID: 31429573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new insight into the impact of different proteases on SILAC quantitative proteome of the mouse liver.
    Ma J; Li W; Lv Y; Chang C; Wu S; Song L; Ding C; Wei H; He F; Jiang Y; Zhu Y
    Proteomics; 2013 Aug; 13(15):2238-42. PubMed ID: 23703833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ArgC-Like Digestion: Complementary or Alternative to Tryptic Digestion?
    Golghalyani V; Neupärtl M; Wittig I; Bahr U; Karas M
    J Proteome Res; 2017 Feb; 16(2):978-987. PubMed ID: 28051317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample preparation by in-gel digestion for mass spectrometry-based proteomics.
    Granvogl B; Plöscher M; Eichacker LA
    Anal Bioanal Chem; 2007 Oct; 389(4):991-1002. PubMed ID: 17639354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects.
    Zhang Y; Xu T; Shan B; Hart J; Aslanian A; Han X; Zong N; Li H; Choi H; Wang D; Acharya L; Du L; Vogt PK; Ping P; Yates JR
    J Proteomics; 2015 Nov; 129():25-32. PubMed ID: 26196237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of Negative-Ion-Mode Proteomics: An MS1-Only Approach.
    Penanes PA; Gorshkov V; Ivanov MV; Gorshkov MV; Kjeldsen F
    J Proteome Res; 2023 Aug; 22(8):2734-2742. PubMed ID: 37395192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utility of proteases in proteomics, from sequence profiling to structure and function analysis.
    Sun B; Liu Z; Liu J; Zhao S; Wang L; Wang F
    Proteomics; 2023 Mar; 23(6):e2200132. PubMed ID: 36382392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.
    Guan X; Brownstein NC; Young NL; Marshall AG
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):207-217. PubMed ID: 27813191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating Lys-N proteolysis and N-terminal guanidination for improved fragmentation and relative quantification of singly-charged ions.
    Carabetta VJ; Li T; Shakya A; Greco TM; Cristea IM
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1050-60. PubMed ID: 20207164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.