These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20113119)

  • 1. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Friedt JM; Droit C; Martin G; Ballandras S
    Rev Sci Instrum; 2010 Jan; 81(1):014701. PubMed ID: 20113119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Droit C; Martin G; Ballandras S; Friedt JM
    Rev Sci Instrum; 2010 May; 81(5):056103. PubMed ID: 20515180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.
    Friedt JM; Droit C; Ballandras S; Alzuaga S; Martin G; Sandoz P
    Rev Sci Instrum; 2012 May; 83(5):055001. PubMed ID: 22667642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory and application of passive SAW radio transponders as sensors.
    Reindl L; Scholl G; Ostertag T; Scherr H; Wolff U; Schmidt F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1281-92. PubMed ID: 18244291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of wireless SAW sensors.
    Polh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):317-32. PubMed ID: 18238546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Acoustic Wave Resonators for Wireless Sensor Network Applications in the 433.92 MHz ISM Band.
    Moutoulas E; Hamidullah M; Prodromakis T
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32752080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless measurement of temperature using surface acoustic waves sensors.
    Reindl LM; Shrena IM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1457-63. PubMed ID: 15600090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies.
    Ivira B; Benech P; Fillit R; Ndagijimana F; Ancey P; Parat G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):421-30. PubMed ID: 18334348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interrogation unit for passive wireless SAW sensors based on fourier transform.
    Hamsch M; Hoffmann R; Buff W; Binhack M; Klett S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1449-56. PubMed ID: 15600089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniaturized Antenna Design for Wireless and Powerless Surface Acoustic Wave Temperature Sensors.
    Sreang N; Chung JY
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laser probe based on a Sagnac interferometer with fast mechanical scan for RF surface and bulk acoustic wave devices.
    Hashimoto KY; Kashiwa K; Wu N; Omori T; Yamaguchi M; Takano O; Meguro S; Akahane K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):187-94. PubMed ID: 21244986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reader Architectures for Wireless Surface Acoustic Wave Sensors.
    Lurz F; Ostertag T; Scheiner B; Weigel R; Koelpin A
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods.
    Huang YS; Chen YY; Wu TT
    Nanotechnology; 2010 Mar; 21(9):095503. PubMed ID: 20139488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR.
    Friedt JM; Martin G; Goavec-Mérou G; Rabus D; Alzuaga S; Arapan L; Sagnard M; Carry É
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between BAW and SAW sensor principles.
    Benes E; Groschl M; Seifert F; Pohl A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1314-30. PubMed ID: 18244294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Cardiac Wireless Implant Communication: A Feasibility Study on Selecting the Frequency and Matching Medium.
    Amin B; Rehman MRU; Farooq M; Elahi A; Donaghey K; Wijns W; Shahzad A; Vazquez P
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices.
    Tsai CC; Chu SY; Lu CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):660-8. PubMed ID: 19411224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-sensitivity open-loop electronics for gravimetric acoustic-wave-based sensors.
    Rabus D; Friedt JM; Ballandras S; Martin G; Carry E; Blondeau-Patissier V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1219-26. PubMed ID: 25004485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.