These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20113129)

  • 1. Microdisplacement sensor using an optically trapped microprobe based on the interference scale.
    Michihata M; Hayashi T; Nakai D; Takaya Y
    Rev Sci Instrum; 2010 Jan; 81(1):015107. PubMed ID: 20113129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Three dimensional shape measurement of teeth. (5) On the measurement by the newly developed double sensor laser displacement meter].
    Kimura H; Sohmura T; Watanabe T
    Shika Zairyo Kikai; 1990 Mar; 9(2):295-300. PubMed ID: 2135521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subwavelength direct-write nanopatterning using optically trapped microspheres.
    McLeod E; Arnold CB
    Nat Nanotechnol; 2008 Jul; 3(7):413-7. PubMed ID: 18654565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector.
    Pal SB; Haldar A; Roy B; Banerjee A
    Rev Sci Instrum; 2012 Feb; 83(2):023108. PubMed ID: 22380080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor.
    Towrie M; Botchway SW; Clark A; Freeman E; Halsall R; Parker AW; Prydderch M; Turchetta R; Ward AD; Pollard MR
    Rev Sci Instrum; 2009 Oct; 80(10):103704. PubMed ID: 19895067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A selective optical sensor for antimony based on hexagonal mesoporous structures.
    Ismail AA
    J Colloid Interface Sci; 2008 Jan; 317(1):288-97. PubMed ID: 17945250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoposition sensors with superior linear response to position and unlimited travel ranges.
    Lee SC; Peters RD
    Rev Sci Instrum; 2009 Apr; 80(4):045109. PubMed ID: 19405693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage.
    Huang HL; Liu CH; Jywe WY; Wang MS; Fang TH
    Rev Sci Instrum; 2007 Jun; 78(6):066103. PubMed ID: 17614647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light.
    Pralle A; Prummer M; Florin EL; Stelzer EH; Hörber JK
    Microsc Res Tech; 1999 Mar; 44(5):378-86. PubMed ID: 10090214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-axis rapid steering of optically propelled micro/nanoparticles.
    Huang Y; Wan J; Cheng MC; Zhang Z; Jhiang SM; Menq CH
    Rev Sci Instrum; 2009 Jun; 80(6):063107. PubMed ID: 19566196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating.
    Zhao S; Hou C; Bai J; Yang G; Tian F
    Appl Opt; 2011 Apr; 50(10):1413-6. PubMed ID: 21460908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved planar amperometric nitric oxide sensor based on platinized platinum anode. 1. Experimental results and theory when applied for monitoring NO release from diazeniumdiolate-doped polymeric films.
    Lee Y; Oh BK; Meyerhoff ME
    Anal Chem; 2004 Feb; 76(3):536-44. PubMed ID: 14750844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements.
    Trudel V; St-Amant Y
    Appl Opt; 2009 Sep; 48(26):4851-7. PubMed ID: 19745844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for deriving displacement data during cyclical movement using an inertial sensor.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2005 Jul; 208(Pt 13):2503-14. PubMed ID: 15961737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film.
    Yamaguchi A; Hotta K; Teramae N
    Anal Chem; 2009 Jan; 81(1):105-11. PubMed ID: 19049367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry.
    Roy B; Pal SB; Haldar A; Gupta RK; Ghosh N; Banerjee A
    Opt Express; 2012 Apr; 20(8):8317-28. PubMed ID: 22513543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dosimetric studies using glass fibers].
    Gripp S; Häsing FW; Büker H; Ammon J
    Strahlenther Onkol; 1994 Jan; 170(1):48-53. PubMed ID: 8303578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical fiber sensor for small angle and infinite angle detection.
    Lü T; Lang X; Han Y
    Rev Sci Instrum; 2008 May; 79(5):053105. PubMed ID: 18513059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.