These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Leong T; Everitt C; Yuen K; Condron S; Hui A; Ngan SY; Pitman A; Lau EW; MacManus M; Binns D; Ackerly T; Hicks RJ Radiother Oncol; 2006 Mar; 78(3):254-61. PubMed ID: 16545881 [TBL] [Abstract][Full Text] [Related]
6. Influence of FDG-PET on computed tomography-based radiotherapy planning for locally recurrent nasopharyngeal carcinoma. Zheng XK; Chen LH; Wang QS; Wu HB; Wang HM; Chen YQ; Yan WP; Li QS; Xu YK Int J Radiat Oncol Biol Phys; 2007 Dec; 69(5):1381-8. PubMed ID: 17869450 [TBL] [Abstract][Full Text] [Related]
7. [F18] FDG-PET/CT for manual or semiautomated GTV delineation of the primary tumor for radiation therapy planning in patients with esophageal cancer: is it useful? Walter F; Jell C; Zollner B; Andrae C; Gerum S; Ilhan H; Belka C; Niyazi M; Roeder F Strahlenther Onkol; 2021 Sep; 197(9):780-790. PubMed ID: 33104815 [TBL] [Abstract][Full Text] [Related]
8. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Bradley J; Thorstad WL; Mutic S; Miller TR; Dehdashti F; Siegel BA; Bosch W; Bertrand RJ Int J Radiat Oncol Biol Phys; 2004 May; 59(1):78-86. PubMed ID: 15093902 [TBL] [Abstract][Full Text] [Related]
9. Target volume delineation for preoperative radiotherapy of rectal cancer: inter-observer variability and potential impact of FDG-PET/CT imaging. Krengli M; Cannillo B; Turri L; Bagnasacco P; Berretta L; Ferrara T; Galliano M; Gribaudo S; Melano A; Munoz F; Sciacero P; Tseroni V; Bassi MC; Brambilla M; Inglese E Technol Cancer Res Treat; 2010 Aug; 9(4):393-8. PubMed ID: 20626204 [TBL] [Abstract][Full Text] [Related]
10. Automated functional image-guided radiation treatment planning for rectal cancer. Ciernik IF; Huser M; Burger C; Davis JB; Szekely G Int J Radiat Oncol Biol Phys; 2005 Jul; 62(3):893-900. PubMed ID: 15936575 [TBL] [Abstract][Full Text] [Related]
11. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. van Der Wel A; Nijsten S; Hochstenbag M; Lamers R; Boersma L; Wanders R; Lutgens L; Zimny M; Bentzen SM; Wouters B; Lambin P; De Ruysscher D Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):649-55. PubMed ID: 15708242 [TBL] [Abstract][Full Text] [Related]
12. Improving observer variability in target delineation for gastro-oesophageal cancer--the role of (18F)fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Vesprini D; Ung Y; Dinniwell R; Breen S; Cheung F; Grabarz D; Kamra J; Mah K; Mansouri A; Pond G; Brock K; Darling G; Knox J; Haider M; Wong RK Clin Oncol (R Coll Radiol); 2008 Oct; 20(8):631-8. PubMed ID: 18755578 [TBL] [Abstract][Full Text] [Related]
13. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1432-41. PubMed ID: 16125870 [TBL] [Abstract][Full Text] [Related]
14. Defining the target in cancer of the oesophagus: direct radiotherapy planning with fluorodeoxyglucose positron emission tomography-computed tomography. le Grange F; Wickers S; Warry A; Warrilow J; Bomanji J; Tobias JS Clin Oncol (R Coll Radiol); 2015 Mar; 27(3):160-7. PubMed ID: 25540907 [TBL] [Abstract][Full Text] [Related]
15. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Steenbakkers RJ; Duppen JC; Fitton I; Deurloo KE; Zijp LJ; Comans EF; Uitterhoeve AL; Rodrigus PT; Kramer GW; Bussink J; De Jaeger K; Belderbos JS; Nowak PJ; van Herk M; Rasch CR Int J Radiat Oncol Biol Phys; 2006 Feb; 64(2):435-48. PubMed ID: 16198064 [TBL] [Abstract][Full Text] [Related]
16. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Gondi V; Bradley K; Mehta M; Howard A; Khuntia D; Ritter M; Tomé W Int J Radiat Oncol Biol Phys; 2007 Jan; 67(1):187-95. PubMed ID: 17189070 [TBL] [Abstract][Full Text] [Related]
17. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Patel DA; Chang ST; Goodman KA; Quon A; Thorndyke B; Gambhir SS; McMillan A; Loo BW; Koong AC Technol Cancer Res Treat; 2007 Feb; 6(1):31-6. PubMed ID: 17241098 [TBL] [Abstract][Full Text] [Related]
18. Positron emission tomography for radiation treatment planning. Grosu AL; Piert M; Weber WA; Jeremic B; Picchio M; Schratzenstaller U; Zimmermann FB; Schwaiger M; Molls M Strahlenther Onkol; 2005 Aug; 181(8):483-99. PubMed ID: 16044216 [TBL] [Abstract][Full Text] [Related]
19. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer. Guo Y; Li J; Wang W; Zhang Y; Wang J; Duan Y; Shang D; Fu Z Dis Esophagus; 2014; 27(8):744-50. PubMed ID: 24915760 [TBL] [Abstract][Full Text] [Related]
20. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Hanna GG; Carson KJ; Lynch T; McAleese J; Cosgrove VP; Eakin RL; Stewart DP; Zatari A; O'Sullivan JM; Hounsell AR Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1040-51. PubMed ID: 20350798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]