These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 20113372)
41. Malaria control with genetically manipulated insect vectors. Alphey L; Beard CB; Billingsley P; Coetzee M; Crisanti A; Curtis C; Eggleston P; Godfray C; Hemingway J; Jacobs-Lorena M; James AA; Kafatos FC; Mukwaya LG; Paton M; Powell JR; Schneider W; Scott TW; Sina B; Sinden R; Sinkins S; Spielman A; Touré Y; Collins FH Science; 2002 Oct; 298(5591):119-21. PubMed ID: 12364786 [TBL] [Abstract][Full Text] [Related]
42. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Windbichler N; Menichelli M; Papathanos PA; Thyme SB; Li H; Ulge UY; Hovde BT; Baker D; Monnat RJ; Burt A; Crisanti A Nature; 2011 May; 473(7346):212-5. PubMed ID: 21508956 [TBL] [Abstract][Full Text] [Related]
43. Anopheline antiplatelet protein from mosquito saliva regulates blood feeding behavior. Islam A; Emran TB; Yamamoto DS; Iyori M; Amelia F; Yusuf Y; Yamaguchi R; Alam MS; Silveira H; Yoshida S Sci Rep; 2019 Feb; 9(1):3129. PubMed ID: 30816309 [TBL] [Abstract][Full Text] [Related]
44. Malaria. A mosquito transformed. Coates CJ Nature; 2000 Jun; 405(6789):900-1. PubMed ID: 10879519 [No Abstract] [Full Text] [Related]
45. A standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus. Artemov GN; Sharakhova MV; Naumenko AN; Karagodin DA; Baricheva EM; Stegniy VN; Sharakhov IV Med Vet Entomol; 2015 Sep; 29(3):230-7. PubMed ID: 25776224 [TBL] [Abstract][Full Text] [Related]
46. Fitness consequences of Anopheles gambiae population hybridization. Menge DM; Guda T; Zhong D; Pai A; Zhou G; Beier JC; Gouagna L; Yan G Malar J; 2005 Sep; 4():44. PubMed ID: 16174295 [TBL] [Abstract][Full Text] [Related]
47. Gene copy number and function of the APL1 immune factor changed during Anopheles evolution. Mitri C; Bischoff E; Eiglmeier K; Holm I; Dieme C; Brito-Fravallo E; Raz A; Zakeri S; Nejad MIK; Djadid ND; Vernick KD; Riehle MM Parasit Vectors; 2020 Jan; 13(1):18. PubMed ID: 31931885 [TBL] [Abstract][Full Text] [Related]
48. Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. Nirmala X; Marinotti O; Sandoval JM; Phin S; Gakhar S; Jasinskiene N; James AA Insect Biochem Mol Biol; 2006 Sep; 36(9):694-700. PubMed ID: 16935218 [TBL] [Abstract][Full Text] [Related]
50. Physical Genome Mapping Using Fluorescence In Situ Hybridization with Mosquito Chromosomes. Sharakhova MV; Artemov GN; Timoshevskiy VA; Sharakhov IV Methods Mol Biol; 2019; 1858():177-194. PubMed ID: 30414118 [TBL] [Abstract][Full Text] [Related]
51. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. Kim W; Koo H; Richman AM; Seeley D; Vizioli J; Klocko AD; O'Brochta DA J Med Entomol; 2004 May; 41(3):447-55. PubMed ID: 15185949 [TBL] [Abstract][Full Text] [Related]
52. Comparative physical genome mapping of malaria vectors Anopheles sinensis and Anopheles gambiae. Wei Y; Cheng B; Zhu G; Shen D; Liang J; Wang C; Wang J; Tang J; Cao J; Sharakhov IV; Xia A Malar J; 2017 Jun; 16(1):235. PubMed ID: 28583133 [TBL] [Abstract][Full Text] [Related]
53. What's buzzing? Mosquito genomics and transgenic mosquitoes. Atkinson PW; Michel K Genesis; 2002 Jan; 32(1):42-8. PubMed ID: 11835673 [TBL] [Abstract][Full Text] [Related]
54. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae. Volohonsky G; Hopp AK; Saenger M; Soichot J; Scholze H; Boch J; Blandin SA; Marois E PLoS Pathog; 2017 Jan; 13(1):e1006113. PubMed ID: 28095489 [TBL] [Abstract][Full Text] [Related]
55. Ikirara, a novel transposon family from the malaria vector mosquito, Anopheles gambiae. Romans P; Bhattacharyya RK; Colavita A Insect Mol Biol; 1998 Feb; 7(1):1-10. PubMed ID: 9459424 [TBL] [Abstract][Full Text] [Related]
56. Mosquito engineering. Building a disease-fighting mosquito. Enserink M Science; 2000 Oct; 290(5491):440-1. PubMed ID: 11183760 [TBL] [Abstract][Full Text] [Related]
57. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes. Jacobs-Lorena M J Vector Borne Dis; 2003; 40(3-4):73-7. PubMed ID: 15119075 [TBL] [Abstract][Full Text] [Related]
58. Mosquito transgenesis: what is the fitness cost? Marrelli MT; Moreira CK; Kelly D; Alphey L; Jacobs-Lorena M Trends Parasitol; 2006 May; 22(5):197-202. PubMed ID: 16564223 [TBL] [Abstract][Full Text] [Related]
59. Characterising the effect of Akirin knockdown on Anopheles arabiensis (Diptera: Culicidae) reproduction and survival, using RNA-mediated interference. Letinić BD; Dahan-Moss Y; Koekemoer LL PLoS One; 2020; 15(2):e0228576. PubMed ID: 32049962 [TBL] [Abstract][Full Text] [Related]
60. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Benedict MQ; Robinson AS Trends Parasitol; 2003 Aug; 19(8):349-55. PubMed ID: 12901936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]