These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 20114035)

  • 21. Enhanced hippocampal GABAergic inhibition in mice overexpressing heparin-binding growth-associated molecule.
    Pavlov I; Rauvala H; Taira T
    Neuroscience; 2006 May; 139(2):505-11. PubMed ID: 16473473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABA(B) receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses.
    Xu C; Zhao MX; Poo MM; Zhang XH
    Nat Neurosci; 2008 Dec; 11(12):1410-8. PubMed ID: 18953347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dark rearing alters the short-term synaptic plasticity in visual cortex.
    Tang AH; Chai Z; Wang SQ
    Neurosci Lett; 2007 Jul; 422(1):49-53. PubMed ID: 17630207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental profile of GABAA-mediated synaptic transmission in pyramidal cells of the somatosensory cortex.
    Kobayashi M; Hamada T; Kogo M; Yanagawa Y; Obata K; Kang Y
    Eur J Neurosci; 2008 Sep; 28(5):849-61. PubMed ID: 18691332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking delta subunit.
    Porcello DM; Huntsman MM; Mihalek RM; Homanics GE; Huguenard JR
    J Neurophysiol; 2003 Mar; 89(3):1378-86. PubMed ID: 12626617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons.
    Ren M; Yoshimura Y; Takada N; Horibe S; Komatsu Y
    Science; 2007 May; 316(5825):758-61. PubMed ID: 17478724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks.
    Klueva J; Meis S; de Lima AD; Voigt T; Munsch T
    Dev Neurobiol; 2008 Jun; 68(7):934-49. PubMed ID: 18361402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice.
    Yan J; Zhang Y; Ehret G
    J Neurophysiol; 2005 Jan; 93(1):71-83. PubMed ID: 15331615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corticothalamic inhibition in the thalamic reticular nucleus.
    Zhang L; Jones EG
    J Neurophysiol; 2004 Feb; 91(2):759-66. PubMed ID: 14586030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experience-dependent modification of synaptic plasticity in visual cortex.
    Kirkwood A; Rioult MC; Bear MF
    Nature; 1996 Jun; 381(6582):526-8. PubMed ID: 8632826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-related alterations of GABAergic input to CA1 pyramidal neurons and its control by nicotinic acetylcholine receptors in rat hippocampus.
    Potier B; Jouvenceau A; Epelbaum J; Dutar P
    Neuroscience; 2006 Sep; 142(1):187-201. PubMed ID: 16890374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain-derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices.
    Jiang B; Kitamura A; Yasuda H; Sohya K; Maruyama A; Yanagawa Y; Obata K; Tsumoto T
    Eur J Neurosci; 2004 Aug; 20(3):709-18. PubMed ID: 15255981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb.
    Lagier S; Panzanelli P; Russo RE; Nissant A; Bathellier B; Sassoè-Pognetto M; Fritschy JM; Lledo PM
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7259-64. PubMed ID: 17428916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of GABAA receptors modulates all stages of mechanoreception in spider mechanosensory neurons.
    Pfeiffer K; Torkkeli PH; French AS
    J Neurophysiol; 2012 Jan; 107(1):196-204. PubMed ID: 21957226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-sensitive dye imaging of the visual cortices responding to electrical pulses at different intervals in mice in vivo.
    Hayashida Y; Takeuchi K; Ishikawa N; Okazaki Y; Tamas F; Tanaka H; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():402-5. PubMed ID: 25569981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive erasure of spurious sequences in sensory cortical circuits.
    Bernacchia A; Fiser J; Hennequin G; Lengyel M
    Neuron; 2022 Jun; 110(11):1857-1868.e5. PubMed ID: 35358415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging of population spikes induced by repetitive stimulus pulses in mouse cerebral slices in vitro.
    Nomoto T; Tanaka Y; Hayashida Y; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1109. PubMed ID: 29060068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breaking the Excitation-Inhibition Balance Makes the Cortical Network's Space-Time Dynamics Distinguish Simple Visual Scenes.
    Roland PE; Bonde LH; Forsberg LE; Harvey MA
    Front Syst Neurosci; 2017; 11():14. PubMed ID: 28377701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Approaches to visual cortical function.
    von der Heydt R
    Rev Physiol Biochem Pharmacol; 1987; 108():69-150. PubMed ID: 3306878
    [No Abstract]   [Full Text] [Related]  

  • 40. Spatiotemporal properties of the action potential propagation in the mouse visual cortical slice analyzed by calcium imaging.
    Osanai M; Tanaka S; Takeno Y; Takimoto S; Yagi T
    PLoS One; 2010 Oct; 5(10):e13738. PubMed ID: 21060776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.