These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 20116050)

  • 1. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.
    Gan S; Piao SH; Choi HJ; Zakaria S; Chia CH
    Carbohydr Polym; 2016 Feb; 137():693-700. PubMed ID: 26686181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The giant electrorheological effect in suspensions of nanoparticles.
    Wen W; Huang X; Yang S; Lu K; Sheng P
    Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response.
    Bae DH; Choi HJ; Choi K; Nam JD; Islam MS; Kao N
    Carbohydr Polym; 2017 Jun; 165():247-254. PubMed ID: 28363547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrorheological behavior of suspensions of a substituted polyaniline with long alkyl pendants.
    Woo DJ; Suh MH; Shin ES; Lee CW; Lee SH
    J Colloid Interface Sci; 2005 Aug; 288(1):71-4. PubMed ID: 15927563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrorheological properties of PMMA-b-PSt copolymer suspensions.
    Yilmaz H; Degirmenci M; Unal HI
    J Colloid Interface Sci; 2006 Jan; 293(2):489-95. PubMed ID: 16054638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New electrorheological fluid obtained from mercaptosilsesquioxane-modified silicate suspensions.
    Marins JA; Dahmouche K; Soares BG
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):133-9. PubMed ID: 25428054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; Durán JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses.
    Liu Z; Zhao Z; Jin X; Wang LM; Liu YD
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorheological analysis of nano laden suspensions.
    Lozano K; Hernandez C; Petty TW; Sigman MB; Korgel B
    J Colloid Interface Sci; 2006 May; 297(2):618-24. PubMed ID: 16337644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of potato starch and its electrorheological suspension.
    Sung JH; Park DP; Park BJ; Choi HJ; Jhon MS
    Biomacromolecules; 2005; 6(4):2182-8. PubMed ID: 16004461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.