BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20116097)

  • 21. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease.
    Philips T; Robberecht W
    Lancet Neurol; 2011 Mar; 10(3):253-63. PubMed ID: 21349440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amyotrophic lateral sclerosis.
    Kiernan MC; Vucic S; Cheah BC; Turner MR; Eisen A; Hardiman O; Burrell JR; Zoing MC
    Lancet; 2011 Mar; 377(9769):942-55. PubMed ID: 21296405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target.
    Bogaert E; d'Ydewalle C; Van Den Bosch L
    CNS Neurol Disord Drug Targets; 2010 Jul; 9(3):297-304. PubMed ID: 20406181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage?
    Patai R; Nógrádi B; Engelhardt JI; Siklós L
    Biochem Biophys Res Commun; 2017 Feb; 483(4):1031-1039. PubMed ID: 27545602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium Dyshomeostasis and Lysosomal Ca
    Tedeschi V; Petrozziello T; Secondo A
    Cells; 2019 Oct; 8(10):. PubMed ID: 31597311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the Role of Metabolic Hormones in Amyotrophic Lateral Sclerosis.
    Moțățăianu A; Mănescu IB; Șerban G; Bărcuțean L; Ion V; Bălașa R; Andone S
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis.
    Salzinger A; Ramesh V; Das Sharma S; Chandran S; Thangaraj Selvaraj B
    Cells; 2024 May; 13(10):. PubMed ID: 38786016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights on Natural Products Against Amyotrophic Lateral Sclerosis (ALS).
    Monteiro KLC; Dos Santos Alcântara MG; de Aquino TM; da Silva-Júnior EF
    Curr Neuropharmacol; 2024; 22(7):1169-1188. PubMed ID: 38708921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates.
    Ovsepian SV; O'Leary VB; Martinez S
    Brain Struct Funct; 2024 Jan; 229(1):1-14. PubMed ID: 37999738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms.
    Xie M; Pallegar PN; Parusel S; Nguyen AT; Wu LJ
    Mol Neurodegener; 2023 Oct; 18(1):75. PubMed ID: 37858176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View.
    Sanghai N; Tranmer GK
    Cells; 2023 Sep; 12(18):. PubMed ID: 37759540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture.
    Maragakis NJ; de Carvalho M; Weiss MD
    Ann Clin Transl Neurol; 2023 Nov; 10(11):1948-1971. PubMed ID: 37641443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic effects of prognostic factors and individual survival prediction for amyotrophic lateral sclerosis disease.
    Huang B; Geng X; Yu Z; Zhang C; Chen Z
    Ann Clin Transl Neurol; 2023 Jun; 10(6):892-903. PubMed ID: 37014017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis.
    de Oliveira LMG; Carreira RB; de Oliveira JVR; do Nascimento RP; Dos Santos Souza C; Trias E; da Silva VDA; Costa SL
    Neurotox Res; 2023 Jun; 41(3):288-309. PubMed ID: 36800114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy?
    Bonsignore G; Martinotti S; Ranzato E
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Physiological Properties to Selective Vulnerability of Motor Units in Amyotrophic Lateral Sclerosis.
    Bączyk M; Manuel M; Roselli F; Zytnicki D
    Adv Neurobiol; 2022; 28():375-394. PubMed ID: 36066833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis.
    Zhao J; Wang X; Huo Z; Chen Y; Liu J; Zhao Z; Meng F; Su Q; Bao W; Zhang L; Wen S; Wang X; Liu H; Zhou S
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal microRNAs safeguard ER Ca
    Paschou M; Papazafiri P; Charalampous C; Zachariadis M; Dedos SG; Doxakis E
    Cell Mol Life Sci; 2022 Jun; 79(7):373. PubMed ID: 35727337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells.
    Peggion C; Scalcon V; Massimino ML; Nies K; Lopreiato R; Rigobello MP; Bertoli A
    Antioxidants (Basel); 2022 Mar; 11(4):. PubMed ID: 35453299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defects of Nutrient Signaling and Autophagy in Neurodegeneration.
    Ondaro J; Hernandez-Eguiazu H; Garciandia-Arcelus M; Loera-Valencia R; Rodriguez-Gómez L; Jiménez-Zúñiga A; Goikolea J; Rodriguez-Rodriguez P; Ruiz-Martinez J; Moreno F; Lopez de Munain A; Holt IJ; Gil-Bea FJ; Gereñu G
    Front Cell Dev Biol; 2022; 10():836196. PubMed ID: 35419363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.