BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20116109)

  • 1. Fetal cell microchimerism develops through the migration of fetus-derived cells to the maternal organs early after implantation.
    Sunami R; Komuro M; Yuminamochi T; Hoshi K; Hirata S
    J Reprod Immunol; 2010 Mar; 84(2):117-23. PubMed ID: 20116109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?
    Tan XW; Liao H; Sun L; Okabe M; Xiao ZC; Dawe GS
    Stem Cells; 2005; 23(10):1443-52. PubMed ID: 16091558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural history of fetal cell microchimerism during and following murine pregnancy.
    Khosrotehrani K; Johnson KL; Guégan S; Stroh H; Bianchi DW
    J Reprod Immunol; 2005 Jun; 66(1):1-12. PubMed ID: 15949558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury.
    Wang Y; Iwatani H; Ito T; Horimoto N; Yamato M; Matsui I; Imai E; Hori M
    Biochem Biophys Res Commun; 2004 Dec; 325(3):961-7. PubMed ID: 15541383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-directional cell trafficking between mother and fetus in mouse placenta.
    Vernochet C; Caucheteux SM; Kanellopoulos-Langevin C
    Placenta; 2007 Jul; 28(7):639-49. PubMed ID: 17116327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of pregnancy associated progenitor cells in the regeneration of injured maternal organs].
    Sunami R; Tagaya H; Hirata S
    Nihon Rinsho Meneki Gakkai Kaishi; 2010; 33(6):287-92. PubMed ID: 21212580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency of fetal cells within a primitive stem cell population in maternal blood.
    Mikhail MA; M'Hamdi H; Welsh J; Levicar N; Marley SB; Nicholls JP; Habib NA; Louis LS; Fisk NM; Gordon MY
    Hum Reprod; 2008 Apr; 23(4):928-33. PubMed ID: 18238907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cadmium exposure on morphological aspects of pancreas, weights of fetus and placenta in streptozotocin-induced diabetic pregnant rats.
    Kanter M; Yoruk M; Koc A; Meral I; Karaca T
    Biol Trace Elem Res; 2003; 93(1-3):189-200. PubMed ID: 12835501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchimeric fetal cells are recruited to maternal kidney following injury and activate collagen type I transcription.
    Bou-Gharios G; Amin F; Hill P; Nakamura H; Maxwell P; Fisk NM
    Cells Tissues Organs; 2011; 193(6):379-92. PubMed ID: 21150166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy.
    Zenclussen ML; Thuere C; Ahmad N; Wafula PO; Fest S; Teles A; Leber A; Casalis PA; Bechmann I; Priller J; Volk HD; Zenclussen AC
    Am J Reprod Immunol; 2010 Mar; 63(3):200-8. PubMed ID: 20055792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse.
    Khosrotehrani K; Bianchi DW
    J Cell Sci; 2005 Apr; 118(Pt 8):1559-63. PubMed ID: 15811948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fetal cell microchimerism in human cancers.
    Fugazzola L; Cirello V; Beck-Peccoz P
    Cancer Lett; 2010 Jan; 287(2):136-41. PubMed ID: 19541407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maternal immune system's interaction with circulating fetal cells.
    Bonney EA; Matzinger P
    J Immunol; 1997 Jan; 158(1):40-7. PubMed ID: 8977173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchimerism and tolerance after in utero bone marrow transplantation in mice.
    Kim HB; Shaaban AF; Yang EY; Liechty KW; Flake AW
    J Surg Res; 1998 Jun; 77(1):1-5. PubMed ID: 9698523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow contributes to the population of pancreatic stellate cells in mice.
    Watanabe T; Masamune A; Kikuta K; Hirota M; Kume K; Satoh K; Shimosegawa T
    Am J Physiol Gastrointest Liver Physiol; 2009 Dec; 297(6):G1138-46. PubMed ID: 19808658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson's disease.
    Rodriguez M; Alvarez-Erviti L; Blesa FJ; Rodríguez-Oroz MC; Arina A; Melero I; Ramos LI; Obeso JA
    Neurobiol Dis; 2007 Dec; 28(3):316-25. PubMed ID: 17897835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal cell-free DNA circulates in the plasma of pregnant mice: relevance for animal models of fetomaternal trafficking.
    Khosrotehrani K; Wataganara T; Bianchi DW; Johnson KL
    Hum Reprod; 2004 Nov; 19(11):2460-4. PubMed ID: 15298977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplacental traffic after in utero mesenchymal stem cell transplantation.
    Troeger C; Perahud I; Moser S; Holzgreve W
    Stem Cells Dev; 2010 Sep; 19(9):1385-92. PubMed ID: 20131967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitating cells enable engraftment of purified fetal liver stem cells in allogeneic recipients.
    Gaines BA; Colson YL; Kaufman CL; Ildstad S
    Exp Hematol; 1996 Jul; 24(8):902-13. PubMed ID: 8690049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair.
    Cirello V; Recalcati MP; Muzza M; Rossi S; Perrino M; Vicentini L; Beck-Peccoz P; Finelli P; Fugazzola L
    Cancer Res; 2008 Oct; 68(20):8482-8. PubMed ID: 18922922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.