BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20116208)

  • 21. A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes.
    Murakoshi K; Mizuno J
    Biosystems; 2004 Nov; 77(1-3):109-17. PubMed ID: 15527950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Value-directed human behavior analysis from video using partially observable Markov decision processes.
    Hoey J; Little JJ
    IEEE Trans Pattern Anal Mach Intell; 2007 Jul; 29(7):1118-32. PubMed ID: 17496372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benchmarking for Bayesian Reinforcement Learning.
    Castronovo M; Ernst D; Couëtoux A; Fonteneau R
    PLoS One; 2016; 11(6):e0157088. PubMed ID: 27304891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partially observable Markov decision processes and performance sensitivity analysis.
    Li Y; Yin B; Xi H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1645-51. PubMed ID: 19022734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acceleration of reinforcement learning by policy evaluation using nonstationary iterative method.
    Senda K; Hattori S; Hishinuma T; Kohda T
    IEEE Trans Cybern; 2014 Dec; 44(12):2696-705. PubMed ID: 24733037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individualization of pharmacological anemia management using reinforcement learning.
    Gaweda AE; Muezzinoglu MK; Aronoff GR; Jacobs AA; Zurada JM; Brier ME
    Neural Netw; 2005; 18(5-6):826-34. PubMed ID: 16109475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The actor-critic learning is behind the matching law: matching versus optimal behaviors.
    Sakai Y; Fukai T
    Neural Comput; 2008 Jan; 20(1):227-51. PubMed ID: 18045007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incremental social learning in particle swarms.
    de Oca MA; Stutzle T; Van den Enden K; Dorigo M
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):368-84. PubMed ID: 20875976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guiding exploration by pre-existing knowledge without modifying reward.
    Främling K
    Neural Netw; 2007 Aug; 20(6):736-47. PubMed ID: 17367993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model.
    Johnson A; Redish AD
    Neural Netw; 2005 Nov; 18(9):1163-71. PubMed ID: 16198539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the violation of reward maximization and invariance in reinforcement schedules.
    La Camera G; Richmond BJ
    PLoS Comput Biol; 2008 Aug; 4(8):e1000131. PubMed ID: 18688266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of rat behavior by a reinforcement learning algorithm in consideration of appearance probabilities of reinforcement signals.
    Murakoshi K; Noguchi T
    Biosystems; 2005 Apr; 80(1):83-90. PubMed ID: 15740837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A unified analysis of value-function-based reinforcement- learning algorithms.
    Szepesvári C; Littman ML
    Neural Comput; 1999 Nov; 11(8):2017-59. PubMed ID: 10578043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prefrontal cortex as a meta-reinforcement learning system.
    Wang JX; Kurth-Nelson Z; Kumaran D; Tirumala D; Soyer H; Leibo JZ; Hassabis D; Botvinick M
    Nat Neurosci; 2018 Jun; 21(6):860-868. PubMed ID: 29760527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two forms of immediate reward reinforcement learning for exploratory data analysis.
    Wu Y; Fyfe C; Lai PL
    Neural Netw; 2008 Aug; 21(6):847-55. PubMed ID: 18662854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A neurocomputational model for cocaine addiction.
    Dezfouli A; Piray P; Keramati MM; Ekhtiari H; Lucas C; Mokri A
    Neural Comput; 2009 Oct; 21(10):2869-93. PubMed ID: 19635010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.
    Uragami D; Takahashi T; Matsuo Y
    Biosystems; 2014 Feb; 116():1-9. PubMed ID: 24296286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.